IDTechEx Discusses The Tantalizing Potential for GaN in Electric Vehicle Power Electronics
March 27, 2023 | Business WireEstimated reading time: 3 minutes

As electric vehicle (EV) power electronics undergoes a paradigm shift towards wide bandgap (WBG) semiconductors, it is clear that silicon carbide (SiC) is becoming the material of choice, while gallium nitride (GaN) is often shoe-boxed into telecommunications or optoelectronics applications. In part, this is because SiC has the greatest thermal conductivity (of Si and GaN), which naturally lends itself to the high temperature, power, and voltage operation typical of an EV. Yet, GaN can still achieve double the thermal conductivity of Si and is superior to SiC in almost every other metric, from electron mobility and efficiency to breakdown voltage.
The problem is GaN power devices today are operating some two orders of magnitude worse than their bulk material properties, reflecting the tantalizing potential. The stakes are also high as EV markets grow rapidly and OEMs are looking to improve drive cycle efficiencies using the WBG power electronics commercially available today.
Indeed, the new IDTechEx report "Power Electronics for Electric Vehicles 2023-2033" covers adoption rates of SiC and GaN in electric vehicle inverters, onboard chargers (OBC) and converters. Market entry of GaN is predicted in the near future, and the report shows that YoY growth of SiC in EV markets will reach 79% in 2023 while the overall EV market has a 15% CAGR over the next ten years.
What's preventing GaN devices from tapping into this market? The crucial barrier is the material's production quality, which depends on the epitaxial substrate – GaN, SiC or Si. Since the primary source of material degradation are mismatches between the epitaxial growth and the substrate, the ideal case is homoepitaxy, or bulk GaN (GaN-on-GaN). Indeed, the knock-on effect on the performance when using silicon-based substrates is demonstrated by the blocking voltages achieved. Bulk GaN is 94kV, and SiC is 45kV, but GaN-on-Si, in volume production today, is around ~1kV because of mismatches, which is comparable to bulk silicon (Si). For a holistic view of the semiconductor supply chain, the new IDTechEx report "Semiconductors for Autonomous and Electric Vehicles 2023-2033" covers semiconductor trends and materials demand for electric vehicles, autonomous vehicles, battery management systems (BMS), radar, Lidar, infotainment and more.
As is often the case with emerging technologies, the adoption of the best technology, in this case, GaN-on-GaN, is limited by the high cost. Bulk GaN is only available in small wafer sizes, contributing to a cost of around 1000 times greater than Gan-on-Si. The next best choice is Gan-on-SiC, which yields lower mismatches but again has a cost of around two orders of magnitude greater. Using GaN for high voltage applications, EV inverters, for example, therefore require either improving mismatches between GaN-on-Si or achieving low-cost production of bulk GaN. Until this is achieved, SiC will remain the dominant choice for high-voltage WBG applications.
However, opportunities are emerging and IDTechEx predicts that OBCs and converters will be the first market entry point, with timelines given in the report. This is because OBCs and converters operate at much lower powers and the efficiency advantage of WBG materials is a clear driver for faster AC charging or internal charging of the low-voltage battery (via the converter).
Furthermore, there has been exciting progress for high voltage GaN in 2022 with new partnerships forming. VisIC Technologies, based out of Israel, is one to watch. The company develops automotive GaN power devices and partnered with Hofer Powertrain, which will use its 650V GaN chip in an 800V EV inverter design. This is one of the first examples of GaN technology being applied to a high-voltage inverter and represents a promising start. Given automotive adoption cycles are typically around four years, the door is opening for high voltage GaN adoption in EV markets, delivering a huge new growth opportunity for the industry.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Global Electronics Industry Remains Under Pressure from Rising Costs
08/04/2025 | Global Electronics AssociationThe global electronics manufacturing supply chain remains under pressure from rising costs, with 61% of firms reporting higher material costs and 54% noting increased labor expenses. according to the Global Electronics Association’s Sentiment of the Global Electronics Manufacturing Supply Chain Report.
Statement from the Global Electronics Association on the July 2025 Tariff on Copper Foil and Electronics-Grade Copper Inputs
07/31/2025 | Global Electronics AssociationWe are disappointed by today’s decision to impose a 50% tariff on imported copper foil and other essential materials critical to electronics manufacturing in the United States.
Direct Metallization: A Sustainable Shift in PCB Fabrication
07/31/2025 | Jim Watkowski, Harry Yang, and Mark Edwards, MacDermid Alpha Electronics SolutionsThe global electronics industry is undergoing a significant transformation, driven by the need for more resilient supply chains and environmentally sustainable manufacturing practices. Printed circuit boards (PCBs), the backbone of interconnection for electronic devices, are at the center of this shift. Traditionally, PCB fabrication has relied heavily on electroless copper, a process that, while effective, is resource-intensive and environmentally hazardous. In response, many manufacturers are turning to direct metallization technologies as a cleaner, more efficient alternative.
Considering the Future of Impending Copper Tariffs
07/30/2025 | I-Connect007 Editorial TeamThe Global Electronics Association is alerting industry members that a potential 50% tariff on copper could hit U.S. electronics manufacturers where it hurts.
WellPCB, OurPCB Launch Low-Cost PCB Assembly and Custom Cable Assembly Solutions
05/29/2025 | ACCESSWIREWellPCB and OurPCB, world leading PCB manufacturing service providers, announced today that they have officially launched new Low-Cost PCB Assembly Solutions and Custom Cable Assembly services to meet the needs of the electronics manufacturing industry for high cost performance and flexible customization.