Coherent Secures $15M in Chips Act Funding Through the CLAWS Hub
April 12, 2024 | CoherentEstimated reading time: 1 minute
Coherent Corp., a leader in wide- and ultrawide-bandgap semiconductors, announced that it secured $15 million in funding from the Creating Helpful Incentives to Produce Semiconductors (CHIPS) and Science Act of 2022 that provided the Department of Defense (DoD) with $2 billion to strengthen and revitalize the U.S. semiconductor supply chain.
One of the key objectives of the CHIPS program is to nurture ecosystems that reduce risk, incentivizing large-scale private investment in production, breakthrough technologies, and workers. To that end, the DoD, through the Naval Surface Warfare Center Crane Division and the National Security Technology Accelerator, established eight Microelectronics Commons regional innovation hubs in September, including the Commercial Leap Ahead for Wide-Bandgap Semiconductors (CLAWS) Hub based in North Carolina and led by NC State University. As a member of the CLAWS Hub, Coherent will receive $15 million to accelerate the commercialization of next-generation wide- and ultrawide-bandgap semiconductors, namely, silicon carbide and single-crystal diamond, respectively.
“We are excited to be recipients of funding from the CHIPS Act, delighted to be part of the CLAWS Hub, and proud to help the U.S. establish a strategic, long-term leadership position in these critical next-generation semiconductor technologies,” said Sohail Khan, Executive Vice President, Wide-Bandgap Electronics. “Wide- and ultrawide-bandgap semiconductors enable the electrification of transportation, including road vehicles, high-speed trains, and mobile industrial machinery. They also enable smart power grids to efficiently respond to fluctuations in energy demands by regulating the delivery of electricity from conventional and renewable sources to distribution networks, as well as to and from utility-scale power storage and microgrids.”
In addition to DoD requirements for high-voltage, high-power applications and systems including hybrid electric vehicles (HEVs), more electric aircraft (MEA) components, directed energy, Navy vessel power systems, and all-electric ships, silicon carbide power electronics are increasingly recognized for their potential to greatly improve the energy efficiency of artificial intelligence (AI) data centers and traditional hyperscale data centers, where power consumption is growing rapidly due to the exploding demand for data- and compute-intensive workloads from AI, cryptocurrency mining, and blockchain applications.
Single-crystal diamond promises to exceed the performance of silicon carbide and greatly expand the applications universe with quantum computing, quantum encryption, and quantum sensing.
Suggested Items
IBM Power11 Raises the Bar for Enterprise IT
07/10/2025 | IBMIBM revealed IBM Power11, the next generation of IBM® Power® servers. Redesigned with innovations across its processor, hardware architecture, and virtualization software stack, Power11 is designed to deliver the availability, resiliency, performance, and scalability enterprises demand, for seamless hybrid deployment on-premises or in IBM Cloud.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.
Maxar Awarded Contract by NGA to Deliver Ai-Powered Object Detection Services
07/01/2025 | MaxarMaxar Intelligence, the leading provider of secure, precise geospatial insights, announced that it was awarded Delivery Order 01 under the Luno A program by the National Geospatial-Intelligence Agency (NGA).
Empower Appoints Steve Hertog as Senior Vice President of Sales to Strengthen Next Phase of High Growth
07/01/2025 | Empower SemiconductorEmpower Semiconductor, the world leader in integrated voltage regulators (IVRs), announced the appointment of Steve Hertog as Senior Vice President of Sales. In this role,
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.