Sikorsky Flight-Tests Scalable ‘Rotor Blown Wing’ UAS For DARPA Project
May 27, 2024 | Lockheed MartinEstimated reading time: 1 minute
Sikorsky, a Lockheed Martin company, is conducting flight tests to mature the control laws and aerodynamics of a novel vertical takeoff and landing uncrewed aerial system (VTOL / UAS). The flight tests are intended to prove the efficiency and scalability of a twin proprotor ‘rotor blown wing’ configuration that sits on its tail to take-off and land like a helicopter, and transitions easily to horizontal forward flight for long-endurance missions, such as intelligence, surveillance, reconnaissance and targeting.
The ongoing flight tests support the Ancillary initiative by the Defense Advanced Research Projects Agency (DARPA), which seeks to develop a Class 3 UAS VTOL X-Plane that can operate in most weather conditions from ship decks and unprepared surfaces without infrastructure. Sikorsky is one of several competitors down-selected to advance their UAS conceptual designs into the next development phase.
The term ‘rotor blown wing’ refers to the constant airflow from the proprotor wash across the wing. Sikorsky chose the design to reduce drag on the wing in hover mode and when transitioning to forward flight, and to increase cruise efficiencies and endurance.
The design is just one of the many ways Sikorsky is advancing 21st Century Security® technologies and innovations, said Igor Cherepinsky, director of rapid prototyping group Sikorsky Innovations.
“Flight tests are underway to verify our tail-sitting rotor blown wing UAS can launch and land vertically with high stability, and cruise efficiently on wing,” said Cherepinsky. “Key enablers to flight maneuverability, and future vehicle scalability, are our MATRIX autonomy flight control system, and an articulated rotor system similar to those in traditional helicopters.”
For the flight tests now underway, Sikorsky is flying a proof-of-concept vehicle powered by a battery. If selected to produce an air vehicle for a future ANCILLARY phase, Sikorsky plans to build a 300-pound hybrid-electric version to include a 60-pound ISR payload.
Sikorsky Innovations was formed in 2010 to overcome technological challenges to rotary wing speed, autonomy, and intelligence. Learn more about the engineering team’s achievements in speed and intelligence, and its current focus on electrification and VTOL UAS to support 21st Century Security® missions.
Suggested Items
X-59 Engine Roars, Lockheed Martin Starts Last Major Ground Test
11/12/2024 | Lockheed MartinLockheed Martin Skunk Works, in partnership with NASA Aeronautics, started X-59 engine run testing, marking the aircraft's final major system check-out before taxi tests and first flight. The tests also mark the first time the X-59 was powered fully internally.
Honeywell, Curtiss-Wright Develop Cockpit Voice Recorders to Help Boeing, Airbus Meet New 25-Hour Safety Mandate
11/12/2024 | Curtiss-Wright CorporationHoneywell and Curtiss-Wright Corporation announced they have collaborated to develop a Honeywell Connected Recorder-25 (HCR-25) cockpit voice recorder (CVR) and flight data recorder (FDR) that is now available for applicable Boeing and Airbus commercial and cargo aircraft.
Sikorsky, Rain Successfully Demonstrate Autonomous Flight
11/12/2024 | Lockheed MartinSikorsky, a Lockheed Martin company and Rain, a leader in autonomous aerial wildfire containment technology, successfully demonstrated how an autonomous Black Hawk® helicopter can be commanded to take off, identify the location and size of a small fire, and then accurately drop water to suppress the flames.
U.S. Navy, Lockheed Martin Skunk Works Demonstrate First Live Control of an Uncrewed Air Vehicle by UMCS and MDCX
11/08/2024 | Lockheed MartinLockheed Martin collaborated with the U.S. Navy and General Atomics (GA) in a first-ever live control flight demonstration of an uncrewed system by the Unmanned Carrier Aviation Mission Control Station (UMCS).
L3Harris Electronic Warfare System Completes Safety of Flight Testing
11/08/2024 | L3 TechnologiesL3Harris Technologies has completed Safety of Flight (SOF) qualification on its Viper Shield™ all-digital electronic warfare (EW) suite for F-16 fighter jets. The company will provide the advanced capability to F-16 fleets for six international partners.