-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
DARPA Researchers Highlight Application Areas for Quantum Computing
June 24, 2024 | DARPAEstimated reading time: 2 minutes

Amid efforts to explore quantum computers’ transformative potential, one foundational element remains missing from the discussion about quantum: What are the benchmarks that predict whether tomorrow’s quantum computers will be truly revolutionary? In 2021, DARPA’s Quantum Benchmarking program kicked off with the goal of reinventing the metrics critical to measuring quantum computing progress and applying scientific rigor to often unsubstantiated claims about quantum computing’s future promise.
Six months into the second phase of the program, five teams have highlighted research findings focused on specific applications where quantum computing might make outsized impact over digital supercomputers. Equally important, researchers estimated what size quantum computer is needed to achieve the desired performance and how valuable the computation would be. Pre-prints of these results are available on arxiv.org.
“Quantum Benchmarking set out to quantitatively measure progress towards specific, transformational computational challenges, as well as estimate the hardware-specific resources required for a given level of benchmark performance,” said Dr. Joe Altepeter, Quantum Benchmarking program manager in DARPA’s Microsystems Technology Office. “The findings in these pre-prints mark an important first step toward quantifying the impact of quantum computers. We’re intentionally publishing preliminary results, because we want robust feedback from the scientific and industrial communities. We want that feedback so by the end of the program we have results we — and the community — can really trust.”
In the first phase of the program, eight interdisciplinary teams compiled more than 200 potential applications from which they created 20 candidate benchmarks that could quantify progress in using quantum computers to solve hard computational tasks with economic utility. For the second phase, DARPA selected specific benchmarks for detailed study in three broad categories: chemistry, materials science, and non-linear differential equations. DARPA then selected five teams for the second phase to refine these chosen benchmarks according to rigorous, utility-driven criteria, and then expand those benchmarks’ applications, incorporate scalable and robust testing, evaluate real-world utility, and create tools for estimating resources and performance needed to run end-to-end instantiations of the applications on realistic quantum hardware. The pre-prints describe the teams’ results in these areas, showing that it is plausible that quantum computers will provide advantage for economically valuable applications in certain chemistry, quantum materials, and materials science applications. It is unclear, at this point, whether any advantage can be achieved for applications in nonlinear differential equations.
Three teams — University of Southern California, HRL Laboratories, and L3Harris — focused on benchmarks and applications while two other teams — Rigetti Computing and Zapata Computing — estimated required quantum computing resources. MIT Lincoln Laboratory, NASA, and Los Alamos National Laboratory provided subject matter expertise, software integration, and test and evaluation capabilities.
Throughout the remainder of the second phase, teams will continue to optimize the quantum algorithms studied for the various applications, improve the utility estimates to understand the value proposition of future quantum computers, and continue to develop the software tools.
The findings address potential quantum computing applications, not the hardware needs. A companion effort to the Quantum Benchmarking initiative — the US2QC program — is addressing whether a quantum computer for these applications can actually be built.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Iceberg Quantum Boosts Diraq’s Error-Correction Expertise
08/12/2025 | DiraqDiraq has partnered with new venture Iceberg Quantum to extract early value from its quantum computers. Diraq has a clear line of sight towards delivering quantum computers that are utility scale, the point at which commercial value exceeds operational cost.
Boeing-Built X-37B Spaceplane Set for Eighth Mission
08/04/2025 | BoeingThe Boeing-built X-37B Orbital Test Vehicle (OTV) is preparing to launch its eighth mission (OTV-8) from Florida's Space Coast, with liftoff scheduled no earlier than August 21. This milestone comes less than six months after the successful completion of OTV-7.
Keysight Installs World’s Largest Commercial Quantum Control System at AIST’s Leading-Edge G-QuAT Center
07/30/2025 | Keysight TechnologiesKeysight Technologies, Inc. has delivered the world’s largest1 commercial quantum control system (QCS) to the National Institute of Advanced Industrial Science and Technology (AIST) in Japan.
Diraq Secures CTCP Funding to Uncover Energy Applications
07/28/2025 | DiraqDiraq has been awarded AU$500,000 in funding to explore how quantum computers can enhance the performance, sustainability and security of energy networks.
Honeywell Awarded U.S. Government Contracts to Develop Quantum Sensor-Based Navigation Systems
07/21/2025 | HoneywellHoneywell has been selected by the U.S. Department of Defense’s (DOD) Defense Innovation Unit (DIU) to participate in the Transition of Quantum Sensing (TQS) program.