NASA, GE Aerospace Advancing Hybrid-Electric Airliners with HyTEC
September 17, 2024 | NASAEstimated reading time: 3 minutes
Hybrid-electric cars have been a staple of the road for many years now.
Soon that same idea of a part-electric-, part-gas-powered engine may find its way into the skies propelling a future jet airliner.
NASA is working in tandem with industry partner GE Aerospace on designing and building just such an engine, one that burns much less fuel by including new components to help electrically power the engine.
In this hybrid jet engine, a fuel-burning core powers the engine and is assisted by electric motors. The motors produce electric power, which is fed back into the engine itself—therefore reducing how much fuel is needed to power the engine in the first place.
High Tech Hybrid-Electric
The work is happening as part of NASA’s Hybrid Thermally Efficient Core (HyTEC) project. This work intends to demonstrate this engine concept by the end of 2028 to enable its use on airliners as soon as the 2030s.
It represents a major step forward in jet engine technology.
This jet engine would be the first ever mild hybrid-electric jet engine. A “mild hybrid” engine can be powered partially by electrical machines operating both as motors and generators.
“This will be the first mild hybrid-electric engine and could lead to the first production engine for narrow-body airliners that’s hybrid electric,” said Anthony Nerone, who leads the HyTEC project from NASA’s Glenn Research Center in Cleveland. “It really opens the door for more sustainable aviation even beyond the 2030s.”
The hybrid-electric technology envisioned by NASA and GE Aerospace also could be powered by a new small jet engine core.
A major HyTEC project goal is to design and demonstrate a jet engine that has a smaller core but produces about the same amount of thrust as engines being flown today on single-aisle aircraft.
At the same time, the smaller core technology aims to reduce fuel burn and emissions by an estimated 5 to 10%.
How Does It Work?
A GE Aerospace Passport engine is being modified with hybrid electric components for testing.
“Today’s jet engines are not really hybrid electric,” Nerone said. “They have generators powering things like lights, radios, TV screens, and that kind of stuff. But not anything that can power the engines.”
The challenge is figuring out the best times to use the electric motors.
“Later this year, we are doing some testing with GE Aerospace to research which phases of flight we can get the most fuel savings,” Nerone said.
Embedded electric motor-generators will optimize engine performance by creating a system that can work with or without energy storage like batteries. This could help accelerate the introduction of hybrid-electric technologies for commercial aviation prior to energy storage solutions being fully matured.
“Together with NASA, GE Aerospace is doing critical research and development that could help make hybrid-electric commercial flight possible,” said Arjan Hegeman, general manager of future of flight technologies at GE Aerospace.
The technologies related to HyTEC are among those GE Aerospace is working to mature and advance under CFM International’s Revolutionary Innovation for Sustainable Engines (RISE) program. CFM is a joint venture between GE Aerospace and Safran Aircraft Engines. CFM RISE, which debuted in 2021, encompasses a suite of technologies including advanced engine architectures and hybrid electric systems aimed at being compatible with 100% Sustainable Aviation Fuel.
HyTEC, part of NASA’s Advanced Air Vehicles Program, is a key area of NASA’s Sustainable Flight National Partnership, which is collaborating with government, industry, and academic partners to address the U.S. goal of net-zero greenhouse gas emissions in aviation by the year 2050.
Suggested Items
RTX's Pratt & Whitney and WZL2 Sign Letter of Intent for F100 Sustainment Work in Poland
11/21/2024 | RTXPratt & Whitney, an RTX business, signed a letter of intent with Wojskowe Zaklady Lotnicze Nr. 2 S.A., also known as WZL2, to explore expanded maintenance repair and overhaul capabilities for increased Polish Air Force needs.
Pluritec Expands Service Network in the USA with New Hire in Chicago
11/18/2024 | PluritecPluritec a leading supplier of machines for printed circuit boards, is excited to announce the expansion of its service network in the United States through the hiring new service engineer, Ernesto Raygoza, based in Chicago. This strategic move is designed to enhance Pluritec’s commitment to providing exceptional customer support and to better serve its growing client base throughout the region.
Keysight Providing Software to Enable Researchers through the Microelectronics Commons
11/15/2024 | Keysight TechnologiesKeysight Technologies, Inc. announced it has reached an agreement to provide its electronic design automation (EDA) software to six of the eight hubs participating in the Microelectronics Commons (Commons).
Siemens Unveils Next Generation AI-enhanced Electronic Systems Design Software
11/13/2024 | SiemensSiemens Digital Industries Software announced today the latest advancement in its electronic systems design portfolio. The next generation release takes an integrated and multidisciplinary approach, bringing together Xpedition™ software, Hyperlynx™ software and PADS™ Professional software into a unified user experience that delivers cloud connectivity and AI capabilities to push the boundaries of innovation in electronic systems design.
Happy’s Tech Talk #34: Producibility and Other Pseudo-metrics
11/12/2024 | Happy Holden -- Column: Happy’s Tech TalkAs an engineer, I thrive on data, and one of my favorite forms is metrics. However, the one metric that has always challenged me is producibility. I define this as more than just passing a DRC in CAM, but the entire envelope of “simplicity of design,” “suitability for test,” and many more. Yet, producibility seemed to be different for different engineers and we had no clear way to establish and define producibility other than opinion. When I worked at HP, the company invested in a methodology called design for manufacturing and assembly using the GE/Hitachi Methodology and Dewhurst-Boothroyd software. Finally, I had a methodology that created a producibility score.