-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueFueling the Workforce Pipeline
We take a hard look at fueling the workforce pipeline, specifically at the early introduction of manufacturing concepts and business to young people in this issue of PCB007 Magazine.
Inner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Estimated reading time: 1 minute
Contact Columnist Form
The Degrees of Nickel Hyper-corrosion and Mitigation Strategies
Introduction
In previous columns, I presented information on electroless nickel-immersion gold and possible concerns with black pad and brittle fracture. I am a firm believer (as well as a stickler) for tight process control. In addition, this also means that understanding the root cause or causes of defects must be pursued with vigor!
As a case in point, in this month’s column, I will present additional information about nickel hyper-corrosion by further defining the five degrees of hyper-corrosion. This implies that certain levels of the attack on the nickel are more detrimental than others. It should be noted that for purposes of this writing, I define hyper-corrosion as a spike or fissure in the nickel deposit evident after immersion gold plating. Finally the root causes of such attack on the base nickel will be presented along with strategies to mitigate these effects.
The Five Degrees of Hyper-corrosion
As the title of this column implies, we have identified five degrees of hyper-corrosion. While somewhat arbitrary, the extent of the corrosion spikes or fissures are responsible for the rating given. We found it necessary to provide this input to the industry as we found that, all too often, the OEM sees a tiny fissure in the nickel deposit and makes the false assumption that the PCB will fail in some way. That is categorically false, and I will explain why. First, however, let’s review the definition of each of the degrees of hyper-corrosion:
- Level 1: Only a few spike-type defects and not on every pad observed.
- Level 2: A few spike-type defects observed on most pads.
- Level 3: More than a few spike-type defects and some spreader/spike defects on most pads observed. At this activity level, more than 99% of the solder surface has not degraded or shown signs of increased phosphorus and as such should not inhibit intermetallic formation.
- Level 4: More spreader/spike defects and some area black band defects on most pads observed. This activity level may degrade solder joint integrity.
- Level 5: Mostly large areas of continuous black band on many pads observed. This level of defect activity will affect solder joint integrity.
Read the full column here.
Editor's Note: This column originally appeared in the June 2014 issue of The PCB Magazine.
More Columns from Trouble in Your Tank
Trouble in Your Tank: Interconnect Defect—The Three Degrees of SeparationTrouble in Your Tank: Things You Can Do for Better Wet Process Control
Trouble in Your Tank: Processes to Support IC Substrates and Advanced Packaging, Part 5
Trouble in Your Tank: Materials for PWB Fabrication—Drillability and Metallization
Trouble in Your Tank: Supporting IC Substrates and Advanced Packaging, Part 5
Trouble in Your Tank: Electrodeposition of Copper, Part 6
Trouble in Your Tank: Electrolytic Copper Plating, Part 5
Trouble in Your Tank: Processes to Support IC Substrates and Advanced Packaging, Part 4