-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueWet Process Control
In this issue, we examine wet processes and how to obtain a better degree of control that allows usable data to guide our decisions and produce consistently higher-quality products.
Don’t Just Survive, Thrive
If we are to be relevant and prosper during these next critical decades in electronics, we must do more than survive. As an industry, we can and must thrive. In this issue, our contributors explore these concepts meant to help you take your business to the next level.
Material Matters
Materials management is nuanced, multifaceted, and requires a holistic systems approach for business success. When building high mix, low volume, and high technology, managing materials and overall cost containment are even greater challenges.
- Articles
- Columns
Search Console
- Links
- Events
||| MENU - pcb007 Magazine
Estimated reading time: 1 minute
Contact Columnist Form
Electromagnetic Fields, Part 2: How They Impact Propagation Speed
In my August 2013 column, I suggested that thinking in terms of what the electromagnetic field looks like around our traces might offer significant insight into how our circuits might be performing. In that column, I pointed out that the electromagnetic field had more to do with trace impedance than the specific trace dimensions did. That is, a trace can be “scaled” without changing the impedance (or the shape of the field.) But if the field distribution changes, then the impedance will change.
In this column, I am going to make similar observations about signal propagation speed. Recall that electronic signals travel at the speed of light, or 186,282 miles per second. This equates to 11.8 inches/ns (or what we sometimes round off to a foot per nanosecond.) In any other material, the speed of light slows down. It slows down by the square root of the relative dielectric coefficient, Equation 1.
Equation 1
Consider the situation shown in Figure 1. This is derived from a HyperLynx simulation. Here we have a trace in a stripline environment, surrounded by a dielectric. If we assume the relative dielectric coefficient of the dielectric is 4.0, then the propagation speed of the signal will be 11.8/2 = 5.9 in/ns (we sometimes round this off to 6”/ns.) Note the electromagnetic field in this figure. It is completely contained within the dielectric between the two planes on either side of the trace.
Read the full column here.
Editor's Note: This column originally appear
More Columns from Brooks' Bits
Brooks' Bits: Internal Trace Temperatures—More Complicated Than You ThinkBrooks' Bits: Electromagnetic Fields, Part 3 - How They Impact Coupling
Brooks' Bits: Electromagnetic Fields, Part 2: How They Impact Propagation Speed
Brooks' Bits: How Electromagnetic Fields Determine Impedance, Part 1
Trace Currents and Temperature, Part 4: Via Heat
Trace Currents and Temperature, Part 3: Fusing Currents
Trace Currents and Temperature, Part 1: The Basic Model
The Skinny on Skin Effect, Part 3: Crossover Frequency