Power to the Batteries
June 4, 2015 | UC San DiegoEstimated reading time: 2 minutes
Better solar panels and wind turbines are important to helping ensure a low-carbon future. But they are not enough. The energy from these intermittent sources must be stored, managed, converted and accessed when it’s needed most. And the cost of the battery systems that do this work needs to drop.
This is where the new Sustainable Power and Energy Center at UC San Diego comes in.
NanoEngineering professor Shirley Meng is the inaugural director of the center. She often uses electric cars to frame her own research on battery materials.
To usher in an age of inexpensive, carbon-neutral electric cars, we need higher performance and less expensive batteries, Meng explains. This includes batteries to power the cars themselves and batteries at charging stations that hold energy captured from the sun and wind.
The behind-the-scenes technical challenges to developing better and cheaper batteries are daunting. But the benefits for humanity from $100 kilowatt-hour batteries (about half of today’s prices) would be even greater.
“Our center is quite unique in the sense that it includes engineering, physical sciences and social sciences,” said Meng. “We are hoping to engage public policy experts on campus as well, so that together we can work on sustainable power and energy from different angles.”
Center faculty are also training and mentoring tomorrow’s workforce for green and advanced energy.
Work done by center researchers will inevitably address technical and non-technical challenges inherent in California Governor Jerry Brown’s recent call to establish, by 2030, a California greenhouse gas reduction target of 40 percent below 1990 levels.
Center researchers are well-positioned to make important contributions, in part, because they have the expertise and infrastructure access that lets them collaborate on projects that extend from theoretical and computational materials science all the way to device manufacturing, integration and testing on the campus microgrid.
San Diego itself is another plus. The mild climate offers ideal conditions for maximizing battery life and performance in electric vehicles, microgrids and more. The abundant sunshine and extensive photovoltaic installations are critical for electric-car-charging infrastructure powered by the sun.
More than Technology
The center’s engineers, materials scientists, physicists, chemists and micro-grid experts work with social scientists to address tough problems that cannot be solved with technology alone.
“We can solve the scientific and engineering challenges, but that’s not enough. My colleagues and I reach across UC San Diego and engage with experts on the many non-technical issues that need to be addressed in order to create truly robust and functioning ecosystems for electric vehicles, as well as to enable carbon neutrality for our microgrid in the next decade,” said Meng.
This includes working with UC San Diego economists to identify and compare the economic potential of various renewable energy technologies and breakthroughs.
Another issue is “range anxiety,” which revolves around fears that electric cars can only go so far between charges.
“Even though surveys show 70 percent of people in the U.S. drive less than 40 miles a day, people get really nervous when electric cars cannot go beyond 100 miles,” explained Meng.
Addressing people’s fears about range limitations “is really outside the range of what engineers and physical scientists can do. We will need the help from social scientists and other sectors at UC San Diego,” said Meng.
Suggested Items
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
Hikrobot Integrates Wiferion Technology Into AMRs
04/30/2025 | HikrobotIn the automotive industry, every second counts. AMRs have to work without interruption - charging breaks mean less productivity. Hikrobot, one of the world's leading providers of mobile robotics, therefore relies on Wiferion's wireless charging technology, which has already established itself as the standard in the industry.
Hikrobot Integrates Wiferion Technology into AMRs
04/29/2025 | WiferionIn the automotive industry, every second counts. AMRs have to work without interruption - charging breaks mean less productivity. Hikrobot, one of the world's leading providers of mobile robotics, therefore relies on Wiferion's wireless charging technology, which has already established itself as the standard in the industry.
CCL Design, Ynvisible Announce Strategic Partnership to Deliver Scalable Printed Display Solutions
04/28/2025 | CCL DesignCCL Design will integrate Ynvisible's proprietary display technology into its global manufacturing infrastructure and technology portfolio.
Candor Elevates PCB Fabrication Services with Continued Facility Upgrades
04/28/2025 | Candor CircuitsOntario-based circuit board manufacturer, Candor Circuit Boards has recently completed a series of facility upgrades to improve their PCB offerings. These investments will allow Candor to provide higher volumes of complicated boards more efficiently with better yield. The new technology has allowed the company to take on exciting high technology projects and collaborations in industries such as Military and Aerospace, Medical, Energy and more.