Demonstrating Stretchable Conductor's Ability to Conduct
July 13, 2015 | University of Michigan RegentsEstimated reading time: 3 minutes
The art of paper cutting may slice through a roadblock on the way to flexible, stretchable electronics, a team of engineers and an artist at the University of Michigan has found.
In the future, a little bend in your smartphone might be considered a feature rather than a defect. An important component of future electronics that can be rolled up, folded or embedded in flexible objects is the stretchable conductor, which would make up components like wires and electrodes.
Conductors that stretch are difficult to design, and among those that are known, they either don't expand by much or the conductivity takes a nosedive when they do. By developing a conductor inspired by kirigami, the Japanese art of paper cutting, conductivity is sacrificed up front. The cuts become barriers to electrical conductivity, but when stretched, the conductors are steady performers.
"The kirigami method allows us to design the deformability of the conductive sheets, whereas before it was very Edisonian process with a lot of misses and not a lot of hits," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering, referring to Thomas Edison's trial-and-error approach to invention.
This is because when materials are stretched to the max, it's difficult to predict when and where rips will occur. However, if the tears are designed in a thoughtful way, the material's ability to stretch and recover becomes reliable.
It sounds simple, but until art and engineering came together with this project, no one had reported using kirigami to tackle the challenge of stretchable conductors. The results are presented in the latest edition of Nature Materials.
Matt Shlian, artist and lecturer in the U-M Stamps School of Art and Design, inspired the work with a sheet of paper cut to extend into a herringbone mesh when stretched.
The first prototype of the kirigami stretchable conductor was tracing paper covered in carbon nanotubes. The layout was very simple, with cuts like rows of dashes that opened to resemble a cheese grater.
Rigged up in an argon-filled glass tube, the paper electrode turned the gas into a glowing plasma. The voltage across the electrode sent free electrons running into the argon atoms, causing them to emit light. Kotov explained that arrays of such electrodes could control the pixels of a stretchable plasma display.
The engineers wanted to understand exactly how design choices affected the behavior of the stretchable conductor, so Sharon Glotzer, the Stuart W. Churchill Professor of Chemical Engineering, and her research group, performed computer simulations.
"At first, computer simulation gave us intuition on what kinds of behaviors were to be expected from different cut patterns," said Pablo Damasceno, who recently earned his doctorate in applied physics.
Then, the simulation team explored how details like the length and curvature of the cuts, and the separation between them, related to the stretchiness of the material.
To produce the microscopic kirigami, Terry Shyu, a doctoral student in materials science and engineering, made special "paper" out of graphene oxide, a material composed of carbon and oxygen just one atom thick. She layered it with a flexible plastic, up to 30 layers of each.
The difficult part, she explained, was making the cuts just a few tenths of a millimeter long.
In the Lurie Nanofabrication Facility, she first coated the high-tech paper with a material that can be removed with laser light. She burned the dashes out of that material, which turned it into a mask for the etching process.
A plasma of oxygen ions and electrons broke down the "paper" that wasn't hidden under the mask, creating the neat rows of microscopic dashes. This material behaved as predicted by the simulations, stretching with no additional cost in conductivity.
Kotov is also a professor of chemical engineering, biomedical engineering, materials science and engineering and macromolecular science and engineering. Glotzer is also a professor of materials science and engineering, macromolecular science and engineering, physics, and applied physics.
The study was funded by the National Science Foundation.
Suggested Items
Fresh PCB Concepts: PCB Design Essentials for Electric Vehicle Charging
11/27/2024 | Team NCAB -- Column: Fresh PCB ConceptsElectric vehicles (EVs), powered by electricity rather than fossil fuels, are transforming transportation and reducing environmental impacts. But what good is an EV if it can't be easily charged? In this month's column, Ramon Roche dives into the role of printed circuit boards (PCBs) in electric vehicle charging (EVC)—and the design considerations.
From Construction Work to PCB Design in Under a Year
11/27/2024 | Andy Shaughnessy, Design007 MagazineAt the Anaheim Electronics & Manufacturing Show in October, I had the opportunity to talk with some new PCB designers, including Jon Smith of Frontgrade Aethercomm. During the Anaheim show, John Watson, a PCB design instructor at Palomar College, led a panel of his past and present students, including Jon, who shared his story of switching from a construction career to PCB design in a matter of months, courtesy of Watson’s Palomar College design curriculum.
PCB Layout Rules of Thumb for Consideration
11/25/2024 | Patrick Davis, Cadence Design SystemsJust because a “rule of thumb” is usually based on experience instead of precise facts doesn’t negate its value. For instance, when I told my kids that a good rule of thumb was not to back-talk to their mother, they discovered very quickly how accurate my advice was once they crossed that line. There are a lot of rules of thumb that we rely on daily, including those that apply to PCB design.
HPC Customer Engages Sondrel for High End Chip Design
11/25/2024 | SondrelSondrel, a leading provider of ultra-complex custom chips, has announced that it has started front end, RTL design and verification work on a high-performance computing (HPC) chip project for a major new customer.
Rules of Thumb for PCB Layout
11/21/2024 | Andy Shaughnessy, I-Connect007The dictionary defines a “rule of thumb” as “a broadly accurate guide or principle, based on experience or practice rather than theory.” Rules of thumb are often the foundation of a PCB designer’s thought process when tackling a layout. Ultimately, a product spec or design guideline will provide the detailed design guidance, but rules of thumb can help to provide the general guidance that will help to streamline the layout process and avoid design or manufacturing issues.