Imec and SPTS Partner on 3D IC Wafer Stacking Tech
July 16, 2015 | ImecEstimated reading time: 2 minutes
Nano-electronics research center imec and SPTS Technologies, an Orbotech company and supplier of advanced wafer processing solutions for the global semiconductor and related industries, are jointly developing a highly accurate, short cycle-time dry silicon removal and low temperature passivation solution for through-silicon via-middle processing and thinning of the top-wafer in wafer-to-wafer bonding. The companies made the announcement at the SEMICON West event happening this week in San Francisco.
Wafer backside processing is critical for 3D-IC wafer stacking. Today, through-silicon vias (TSV) formed using "via-middle" processing, are typically exposed from the backside of 300mm device wafers by a combination of mechanical grinding and wet or dry etch processes. Dielectric layers are then deposited by plasma enhanced chemical vapour deposition (PECVD) to passivate and mechanically support the exposed TSVs prior to bump/RDL (redistribution) formation, followed by chip-to-wafer or wafer-to-wafer bonding.
To develop an industrially viable 3D-IC technology, the via reveal process requires a shorter cycle time etching process. Additionally, due to accumulating non-uniformities coming from the TSV frontside etching, bonding and grinding processes, variations of a few microns may occur in residual silicon thickness above the via tips. Therefore, a highly selective process to thin TSV liners and smooth post-etch surfaces is essential to achieve the necessary precision and control within wafer uniformity.
Imec and SPTS are developing a dry etching solution that features in-situ end-point detection. This enables controlled and very precise processing. The process achieves the required TSV height while avoiding lengthy and multiple rework steps thus minimizing the overall cost per wafer. Our first results demonstrate that 1,57µm nail height can be controlled within 300nm range.
Figure 1:
To follow the via reveal etch step, imec and SPTS will also work on PECVD dielectric passivation stacks, with SiO and SiN layers deposited at temperatures below 200°C. Films will be engineered to optimise device electrical performance and stress-managed to minimize warpage of the thin die after debonding.
The collaboration will use SPTS’s Versalis fxP system, a single-wafer cluster platform carrying both etch and dielectric deposition modules to be installed into imec’s 300mm packaging line in Q32015.
"Equipment suppliers are key in developing an integrated solution for the challenges of scaling technology into advanced nodes," said An Steegen, senior vice president process technology at imec. "The collaboration with SPTS confirms imec’s direction to accelerate innovation for all our partners by closely interacting with suppliers at an early stage of development."
"Imec plays a critical role in the long term development of the entire semiconductor value chain, from front to back-end," said Kevin Crofton President of SPTS, and Corporate Vice President at Orbotech. "Their pre-competitive work supports the roadmaps of their core customers. Their remit dictates that they work with vendors and processes that are enabling for imec and their partners, and to be selected is a huge endorsement of our capabilities. We look forward to the results and milestones that we will achieve together."
Imec's research into 3D-IC includes key partners such as GLOBALFOUNDRIES, INTEL, Micron, Panasonic, Samsung, SK Hynix, Sony, and TSMC.
Suggested Items
Magnalytix and Foresite to Host Technical Webinar on SIR Testing and Functional Reliability
06/26/2025 | MAGNALYTIXMagnalytix, in collaboration with Foresite Inc., is pleased to announce an upcoming one-hour Webinar Workshop titled “Comparing SIR IPC B-52 to Umpire 41 Functional & SIR Test Method.” This session will be held on July 24, 2025, and is open to professionals in electronics manufacturing, reliability engineering, and process development seeking insights into new testing standards for climatic reliability.
The Death of the Microsection
06/26/2025 | Bob Neves, Reliability Assessment Solutions, Inc.I got my start out of college grinding and polishing PCB microsections. My thumbs are a bit arthritic today because of the experience (microsection grinders know what I mean). Back then, via structures were rather large, and getting to the center in six steps of grinding and polishing was easy compared to what my team has been doing recently at the lab.
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.
ASC Sunstone Circuits and Screaming Circuits Partner to Launch Online Assembly Parts Ordering – A New Step Toward Seamless PCB Production
06/23/2025 | ASC SunstoneIn a major step toward simplifying the PCB manufacturing and assembly process, ASC Sunstone Circuits and Screaming Circuits are proud to announce the launch of a new online assembly parts ordering feature, now available through Sunstone.com. This enhanced capability allows customers to source assembly components as part of their PCB order, creating a fully integrated experience from bare board fabrication to finished assembly.