Navy Eyes Graphene Nanoribbon for Ultimate Power Control System
July 22, 2015 | University at BuffaloEstimated reading time: 3 minutes
The U.S. Navy distributes electricity aboard most of its ships like a power company. It relies on conductors, transformers and other bulky infrastructure.
The setup works, but with powerful next generation weapons on the horizon and the omnipresent goal of energy efficiency, the Navy is seeking alternatives to conventional power control systems.
One option involves using graphene, which, since its discovery in 2004, has become the material of choice for researchers working to improve everything from solar cells to smartphone batteries.
Accordingly, the Office of Naval Research has awarded University at Buffalo engineers an $800,000 grant to develop narrow strips of graphene called nanoribbons that may someday revolutionize how power is controlled in ships, smartphones and other electronic devices.
“We need to develop new nanomaterials capable of handling greater amounts of energy densities in much smaller devices. Graphene nanoribbons show remarkable promise in this endeavor,” says Cemal Basaran, PhD, a professor in UB’s Department of Civil, Structural and Environmental Engineering, School of Engineering and Applied Sciences, and the grant’s principal investigator.
Graphene is a single layer of carbon atoms packed together like a honeycomb. It is extremely thin, light and strong. It’s also the best known conductor of heat and electricity.
“The beauty of graphene is that it can be grown like biological organisms as opposed to manufacturing materials with traditional techniques,” says Basaran, director of UB’s Electronic Packaging Laboratory and a researcher in UB's New York State Center of Excellence in Materials Informatics. “These bio-inspired materials allow us to control their atomic organizations like controlling genetic DNA makeup of a lab-grown cell.”
While promising, researchers are just beginning to understand graphene and its potential uses. One area of interest is power control systems.
Like overhead power lines, most ships rely on copper or other metals to move electricity. Unfortunately, this process is relatively inefficient; electrons bash into each other and create heat in a process called Joule heating.
“You lose a great deal of energy that way,” Basaran says. “With graphene, you avoid those collisions because it conducts electricity in a different process, known as semi-ballistic conduction. It’s like a high-speed bullet train versus bumper cars.”
Another limitation of metal-based power distribution is the bulky infrastructure – transistors, copper wires, transformers, etc. – needed to move electricity. Whether in a ship or tablet computer, the components take up space and add weight.
Graphene nanoribbons offer a potential solution because they can act as both a conductor (instead of copper) and semiconductor (instead of silicon). Moreover, their ability to withstand failure under extreme energy loads is roughly 1,000 times greater than copper.
That bodes well for the Navy, which, like segments of the automotive industry, is pivoting toward electric vehicles.
It recently launched an all-electric destroyer; the ship’s propellers and drive shafts are turned by electric motors, as opposed to being connected to combustion engines. The integrated power-generation and distribution system may also be used to fire next generation weapons, such as railguns and powerful lasers. And the automation has allowed the Navy to reduce the ship’s crew, which places fewer sailors in potentially dangerous situations.
Graphene nanoribbons could improve these systems by making them more robust and energy-efficient, Basaran said. He and a team of researchers will:
- Design complex simulations that examine how graphene nanoribbons can be used as a power switch.
- Explore how adding hydrogen and other elements, a process known as “doping,” to graphene nanoribbons could improve their performance.
- Investigate graphene nanoribbons’ failure limit under high power loads and try to find ways to improve it.
The research will be performed over the next four years.
Suggested Items
Designers Notebook: Addressing Future Challenges for Designers
02/06/2025 | Vern Solberg -- Column: Designer's NotebookThe printed circuit board is and will probably continue to be the base platform for most electronics. With the proliferation of new generations of high I/O, fine-pitch surface mount semiconductor package variations, circuit interconnect is an insignificant factor. Circuit board designers continually face challenges such as component quantity and complexity, limited surface area, and meeting the circuit board’s cost target. The printed circuit design engineer’s prominent position demands the development of efficiently manufacturable products that perform without compromise.
DesignCon 2025, Day 2: It’s All About AI
01/30/2025 | Marcy LaRont, I-Connect007It’s hard to get away from the topic of artificial intelligence, but why would you? It’s everywhere and in everything, and my time attending presentations about AI at DesignCon 2025 was well worth it. The conference’s agenda featured engaging presentations and discussions focused on the technological advancements in AI, big data centers, and memory innovations, emphasizing the critical relationship between processors and circuit boards.
Beyond Design: Electro-optical Circuit Boards
01/22/2025 | Barry Olney -- Column: Beyond DesignPredicting the role of PCB designers in 10 years is a challenge. If only I had a crystal ball. However, we know that as technology progresses, the limitations of copper PCBs are increasingly apparent, particularly regarding speed, bandwidth, and signal integrity. Innovations such as optical interconnects and photonic integrated circuits are setting the stage for the next generation of PCBs, delivering higher performance and efficiency. The future of PCB design will probably incorporate these new technologies to address the challenges of traditional copper-based designs.
Designers Notebook: Impact of Advanced Semiconductor Packaging on PCB Stackup
01/07/2025 | Vern Solberg -- Column: Designer's NotebookTo accommodate new generations of high I/O semiconductor packaging, printed circuit board fabrication technology has had to undergo significant changes in both the process methods and the criteria for base material selection and construction sequence (stackup). Many of the new high-function multi-core semiconductor package families require more terminals than their predecessors, requiring a significantly narrower terminal pitch. Interconnecting these very fine-pitch, high I/O semiconductors to the PCB is made possible by an intermediate element referred to as an interposer.
BOOK EXCERPT: The Printed Circuit Designer’s Guide to... High Performance Materials, Chapter 4
01/02/2025 | I-Connect007In Chapter 4, Michael Gay discusses the two main types of copper foil used for PCB boards today: electrodeposited (ED) foil and rolled annealed (RA) foil. He also explains the pros and cons of each, and provides an update of the latest innovations in copper foil technology.