Navy Eyes Graphene Nanoribbon for Ultimate Power Control System
July 22, 2015 | University at BuffaloEstimated reading time: 3 minutes
The U.S. Navy distributes electricity aboard most of its ships like a power company. It relies on conductors, transformers and other bulky infrastructure.
The setup works, but with powerful next generation weapons on the horizon and the omnipresent goal of energy efficiency, the Navy is seeking alternatives to conventional power control systems.
One option involves using graphene, which, since its discovery in 2004, has become the material of choice for researchers working to improve everything from solar cells to smartphone batteries.
Accordingly, the Office of Naval Research has awarded University at Buffalo engineers an $800,000 grant to develop narrow strips of graphene called nanoribbons that may someday revolutionize how power is controlled in ships, smartphones and other electronic devices.
“We need to develop new nanomaterials capable of handling greater amounts of energy densities in much smaller devices. Graphene nanoribbons show remarkable promise in this endeavor,” says Cemal Basaran, PhD, a professor in UB’s Department of Civil, Structural and Environmental Engineering, School of Engineering and Applied Sciences, and the grant’s principal investigator.
Graphene is a single layer of carbon atoms packed together like a honeycomb. It is extremely thin, light and strong. It’s also the best known conductor of heat and electricity.
“The beauty of graphene is that it can be grown like biological organisms as opposed to manufacturing materials with traditional techniques,” says Basaran, director of UB’s Electronic Packaging Laboratory and a researcher in UB's New York State Center of Excellence in Materials Informatics. “These bio-inspired materials allow us to control their atomic organizations like controlling genetic DNA makeup of a lab-grown cell.”
While promising, researchers are just beginning to understand graphene and its potential uses. One area of interest is power control systems.
Like overhead power lines, most ships rely on copper or other metals to move electricity. Unfortunately, this process is relatively inefficient; electrons bash into each other and create heat in a process called Joule heating.
“You lose a great deal of energy that way,” Basaran says. “With graphene, you avoid those collisions because it conducts electricity in a different process, known as semi-ballistic conduction. It’s like a high-speed bullet train versus bumper cars.”
Another limitation of metal-based power distribution is the bulky infrastructure – transistors, copper wires, transformers, etc. – needed to move electricity. Whether in a ship or tablet computer, the components take up space and add weight.
Graphene nanoribbons offer a potential solution because they can act as both a conductor (instead of copper) and semiconductor (instead of silicon). Moreover, their ability to withstand failure under extreme energy loads is roughly 1,000 times greater than copper.
That bodes well for the Navy, which, like segments of the automotive industry, is pivoting toward electric vehicles.
It recently launched an all-electric destroyer; the ship’s propellers and drive shafts are turned by electric motors, as opposed to being connected to combustion engines. The integrated power-generation and distribution system may also be used to fire next generation weapons, such as railguns and powerful lasers. And the automation has allowed the Navy to reduce the ship’s crew, which places fewer sailors in potentially dangerous situations.
Graphene nanoribbons could improve these systems by making them more robust and energy-efficient, Basaran said. He and a team of researchers will:
- Design complex simulations that examine how graphene nanoribbons can be used as a power switch.
- Explore how adding hydrogen and other elements, a process known as “doping,” to graphene nanoribbons could improve their performance.
- Investigate graphene nanoribbons’ failure limit under high power loads and try to find ways to improve it.
The research will be performed over the next four years.
Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.