New Fuel-cell Materials Could Pave the Way for Practical Hydrogen-powered Cars
July 23, 2015 | Stanford UniversityEstimated reading time: 1 minute
Hydrogen fuel cells promise clean cars that emit only water. Several major car manufacturers have recently announced their investment to increase the availability of fueling stations while others are currently rolling out new models and prototypes. However, challenges remain, including the chemistry to produce and use hydrogen and oxygen gas efficiently.
In the July 15 edition of ACS Central Science, two research teams report advances on chemical reactions essential to fuel cell technology in separate papers.
Hydrogen (H2) fuel cells combine H2 and oxygen (O2) gases to produce energy. For that to happen, several related chemical reactions are needed, two of which require catalysts.
The first step is to produce the two gases separately. The most common way to do that is to break down, or “split,” water with an electric current in a process called electrolysis. Next, the fuel cell must promote the oxidation of H2. That requires reduction of O2, which yields water.
The catalysts currently available for these reactions, though, are either too expensive and demand too much energy for practical use, or they produce undesirable side products. So Yi Cui’s team at Stanford University and James Gerken and Shannon Stahl at the University of Wisconsin-Madison independently sought new materials for these reactions.
Cui, an assistant professor of materials science and engineering at Stanford and of photon science at the SLAC National Accelerator Laboratory, worked on the first reaction, developing a new cadre of porous materials for water splitting. Cui and his Stanford team used Earth-abundant cobalt-nickel-iron oxides, which are inexpensive and very stable, splitting water continuously for more than 100 hours, significantly better than what researchers have reported for most other non-precious metal materials.
On the side of oxygen reduction, Gerken and Stahl showed how a catalyst system commonly used for aerobic oxidation of organic molecules could be co-opted for electrochemical O2 reduction.
Despite the complementary aims, the two studies diverged in their approaches, with the Stanford team showcasing rugged oxide materials, while the UW-Madison researchers exploited the advantages of inexpensive metal-free molecular catalysts. Together these findings offer promising new techniques for moving fuel-cell technology forward.
The authors of both studies acknowledge funding from the U.S. Department of Energy. Yi Cui additionally acknowledges support from the Global Climate and Energy Project at Stanford.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.