New Fuel-cell Materials Could Pave the Way for Practical Hydrogen-powered Cars
July 23, 2015 | Stanford UniversityEstimated reading time: 1 minute
Hydrogen fuel cells promise clean cars that emit only water. Several major car manufacturers have recently announced their investment to increase the availability of fueling stations while others are currently rolling out new models and prototypes. However, challenges remain, including the chemistry to produce and use hydrogen and oxygen gas efficiently.
In the July 15 edition of ACS Central Science, two research teams report advances on chemical reactions essential to fuel cell technology in separate papers.
Hydrogen (H2) fuel cells combine H2 and oxygen (O2) gases to produce energy. For that to happen, several related chemical reactions are needed, two of which require catalysts.
The first step is to produce the two gases separately. The most common way to do that is to break down, or “split,” water with an electric current in a process called electrolysis. Next, the fuel cell must promote the oxidation of H2. That requires reduction of O2, which yields water.
The catalysts currently available for these reactions, though, are either too expensive and demand too much energy for practical use, or they produce undesirable side products. So Yi Cui’s team at Stanford University and James Gerken and Shannon Stahl at the University of Wisconsin-Madison independently sought new materials for these reactions.
Cui, an assistant professor of materials science and engineering at Stanford and of photon science at the SLAC National Accelerator Laboratory, worked on the first reaction, developing a new cadre of porous materials for water splitting. Cui and his Stanford team used Earth-abundant cobalt-nickel-iron oxides, which are inexpensive and very stable, splitting water continuously for more than 100 hours, significantly better than what researchers have reported for most other non-precious metal materials.
On the side of oxygen reduction, Gerken and Stahl showed how a catalyst system commonly used for aerobic oxidation of organic molecules could be co-opted for electrochemical O2 reduction.
Despite the complementary aims, the two studies diverged in their approaches, with the Stanford team showcasing rugged oxide materials, while the UW-Madison researchers exploited the advantages of inexpensive metal-free molecular catalysts. Together these findings offer promising new techniques for moving fuel-cell technology forward.
The authors of both studies acknowledge funding from the U.S. Department of Energy. Yi Cui additionally acknowledges support from the Global Climate and Energy Project at Stanford.
Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.