Researchers Observe New Record High for Superconductivity
August 19, 2015 | Johannes Gutenberg University MainzEstimated reading time: 4 minutes
Researchers at the Max Planck Institute for Chemistry in Mainz and Johannes Gutenberg University Mainz observed that hydrogen sulfide becomes superconductive at minus 70 degree Celsius – when the substance is placed under a pressure of 1.5 million bar. This corresponds to half of the pressure of the earth's core. With their high-pressure experiments the researchers in Mainz have thus not only set a new record for superconductivity, their findings have also highlighted a potential new way to transport current at room temperature with no loss. Their scientific paper "Conventional superconductivity at 203 K at high pressures" was published in the renowned journal Natureon August 17, 2015.
For many solid-state physicists, superconductors that are suitable for use at room temperature are still a dream. Up to now, the only materials known to conduct current with no electrical resistance and thus no loss did so only at very low temperatures. Accordingly, special copper oxide ceramics, so-called cuprates, took the leading positions in terms of transition temperature, i.e., the temperature at which the material loses its resistance. The record for a ceramic of this type is roughly minus 140 degrees Celsius at normal air pressure and minus 109 degrees Celsius at high pressure. In the ceramics, a special, unconventional form of superconductivity occurs. For conventional superconductivity, temperatures of at least minus 234 degrees Celsius have so far been necessary.
A team led by Dr. Mikhael Eremets, head of the working group "High pressure chemistry and physics" at the Max Planck Institute for Chemistry, working in collaboration with Dr. Vadim Ksenofontov und Sergii Shylin of the Institute of Inorganic Chemistry and Analytical Chemistry at Johannes Gutenberg University Mainz has now observed conventional superconductivity at minus 70 degrees Celsius in hydrogen sulfide (H2S). To convert the substance, which is a gas under normal conditions, into a superconducting metal the scientists did however have to subject it to a pressure of 1.5 megabar or 1.5 million bar.
"With our experiments we have set a new record for the temperature at which a material becomes superconductive," said Dr. Mikhael Eremets. His team has also been the first to prove in an experiment that there are conventional superconductors with a high transition temperature. Theoretical calculations had already predicted this for certain substances including hydrogen sulfide. "There is a lot of potential in looking for other materials in which conventional superconductivity occurs at high temperatures," emphasized the physicist. "There is theoretically no limit for the transition temperature of conventional superconductors, and our experiments give reason to hope that superconductivity can even occur at room temperature."
The researchers generated the extremely high pressure required to make hydrogen sulfide superconductive at comparatively moderate negative temperatures in a special pressure chamber smaller than one cubic centimeter in size. The two diamond tips on the side, which act as anvils, are able to constantly increase the pressure that the sample is subjected to. The cell is equipped with contacts to measure the electrical resistance of the sample. In another high-pressure cell, the researchers were able to investigate the magnetic properties of a material that also change at the transition temperature. After the researchers had filled the pressure chamber with liquid hydrogen sulfide, they increased the pressure acting on the sample gradually up to roughly two megabar and changed the temperature for each pressure level. They took measurements of both resistance and magnetization to determine the material's transition temperature. The magnetization measurements provide very useful information, because a superconductor possesses ideal diamagnetic properties. Dr. Vadim Ksenofontov and Sergii Shylin of the Institute of Inorganic Chemistry and Analytical Chemistry at Mainz University were thus able to produce evidence that the mechanism used can be described as conventional superconductivity. They conducted magnetic high-pressure analyses to measure the Meissner effect. For this experiment they developed special high-pressure cells that allow to determine specific parameters in the magnetic field with great accuracy.
The researchers believe that it is mainly hydrogen atoms that are responsible for hydrogen sulfide losing its electrical resistance under high pressure at relatively high temperatures: Hydrogen atoms oscillate in the lattice with the highest frequency of all elements, because hydrogen is the lightest. As the oscillations of the lattice determine the conventional superconductivity – and do this more effectively the faster the atoms oscillate – materials with high hydrogen content exhibit a relatively high transition temperature. In addition, strong bonds between the atoms increase the temperature at which a material becomes superconducting. These conditions are met in H3S, and it is precisely this compound that develops from H2S at high pressure.
The Mainz-based researchers are now looking for materials with even higher transition temperatures. Increasing the pressure acting on the hydrogen sulfide above 1.5 megabar is not helpful in this case. This has not only been calculated by theoretical physicists, but now also confirmed in experiments performed by the team in Mainz. At even higher temperatures the electron structure changes in such a way that the transition temperature begins to decrease. "An obvious candidate for a high transition temperature is pure hydrogen," said Eremets. "It is expected that it would become superconductive at room temperature under high pressure." His team has already begun experimenting with pure hydrogen, but the experiments are very difficult as they require pressures of three to four megabar.
"Our research into hydrogen sulfide has, however, shown that many hydrogen-rich materials can have a high transition temperature," summarized Eremets. It may even be possible to realize a high-temperature superconductor worth the name in terms of common temperature perception without high pressure. The researchers in Mainz currently need the high pressure to convert materials that act electrically insulating like hydrogen sulfide into metals. "There may be polymers or other hydrogen-rich compounds that can be converted to metals in some other way and become superconductive at room temperature," said the physicist. If such materials can be found, we would finally have superconductors that can be used for a wide range of technical applications.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Trump Copper Tariffs Spark Concern
07/10/2025 | I-Connect007 Editorial TeamPresident Donald Trump stated on July 8 that he plans to impose a 50% tariff on copper imports, sparking concern in a global industry whose output is critical to electric vehicles, military hardware, semiconductors, and a wide range of consumer goods. According to Yahoo Finance, copper futures climbed over 2% following tariff confirmation.
Happy’s Tech Talk #40: Factors in PTH Reliability—Hole Voids
07/09/2025 | Happy Holden -- Column: Happy’s Tech TalkWhen we consider via reliability, the major contributing factors are typically processing deviations. These can be subtle and not always visible. One particularly insightful column was by Mike Carano, “Causes of Plating Voids, Pre-electroless Copper,” where he outlined some of the possible causes of hole defects for both plated through-hole (PTH) and blind vias.
Trouble in Your Tank: Can You Drill the Perfect Hole?
07/07/2025 | Michael Carano -- Column: Trouble in Your TankIn the movie “Friday Night Lights,” the head football coach (played by Billy Bob Thornton) addresses his high school football team on a hot day in August in West Texas. He asks his players one question: “Can you be perfect?” That is an interesting question, in football and the printed circuit board fabrication world, where being perfect is somewhat elusive. When it comes to mechanical drilling and via formation, can you drill the perfect hole time after time?