Quantum States in a Nano-object Manipulated using a Mechanical System
August 28, 2015 | University of BaselEstimated reading time: 2 minutes
Scientists at the Swiss Nanoscience Institute at the University of Basel have used resonators made from single-crystalline diamonds to develop a novel device in which a quantum system is integrated into a mechanical oscillating system. For the first time, the researchers were able to show that this mechanical system can be used to coherently manipulate an electron spin embedded in the resonator – without external antennas or complex microelectronic structures. The results of this experimental study will be published in Nature Physics.
The oscillating resonator influences the electron spin in the nitrogen-vacancy centers (red arrows). Their spin can be efficiently read out by fluorescence microscopy.
In previous publications, the research team led by Georg H. Endress Professor Patrick Maletinsky described how resonators made from single-crystalline diamonds with individually embedded electrons are highly suited to addressing the spin of these electrons. These diamond resonators were modified in multiple instances so that a carbon atom from the diamond lattice was replaced with a nitrogen atom in their crystal lattices with a missing atom directly adjacent. In these “nitrogen-vacancy centers,” individual electrons are trapped. Their “spin” or intrinsic angular momentum is examined in this research.
When the resonator now begins to oscillate, strain develops in the diamond’s crystal structure. This, in turn, influences the spin of the electrons, which can indicate two possible directions (“up” or “down”) when measured. The direction of the spin can be detected with the aid of fluorescence spectroscopy.
Extremely fast spin oscillation
In this latest publication, the scientists have shaken the resonators in a way that allows them to induce a coherent oscillation of the coupled spin for the first time. This means that the spin of the electrons switches from up to down and vice versa in a controlled and rapid rhythm and that the scientists can control the spin status at any time. This spin oscillation is fast compared with the frequency of the resonator. It also protects the spin against harmful decoherence mechanisms.
It is conceivable that this diamond resonator could be applied to sensors – potentially in a highly sensitive way – because the oscillation of the resonator can be recorded via the altered spin. These new findings also allow the spin to be coherently rotated over a very long period of close to 100 microseconds, making the measurement more precise. Nitrogen-vacancy centers could potentially also be used to develop a quantum computer. In this case, the quick manipulation of its quantum states demonstrated in this work would be a decisive advantage.
Suggested Items
IT Distribution Records Strong Revenue Growth in Q1 Fueled by Personal Computing Purchases Amidst Tariff Uncertainty
05/02/2025 | IDCSales through distribution in North America posted a second consecutive quarter of growth in the first quarter of 2025. Distributor Revenues came in at $19.9B which is a 7.6% increase year-over-year, according to the International Data Corporation (IDC) North America Distribution Track e r (NADT).
Keysight EDA, Intel Foundry Collaborate on EMIB-T Silicon Bridge Technology for Next-Generation AI and Data Center Solutions
04/30/2025 | BUSINESS WIREKeysight Technologies, Inc. announced a collaboration with Intel Foundry to support Embedded Multi-die Interconnect Bridge-T (EMIB-T) technology, a cutting-edge innovation aimed at improving high-performance packaging solutions for artificial intelligence (AI) and data center markets in addition to the support of Intel 18A process node.
Federal Electronics Expands Business Development Team, Strengthening National Growth Strategy
04/28/2025 | Federal ElectronicsFederal Electronics, a leader in providing advanced electronic manufacturing services, is proud to announce the expansion of its Business Development team with the appointment of three industry veterans: Andrew Davis, Joel Robbins, and Will Oliver.
CONFIDEE: Guiding You Through Tariff Uncertainty
04/23/2025 | CONFIDEEThe current tariff landscape presents significant challenges for businesses, with shifting trade policies and increased duties impacting supply chains and overall costs. Navigating these complexities requires agility and strategic sourcing.
NASA Aims to Fly First Quantum Sensor for Gravity Measurements
04/18/2025 | NASAA lumpy, colorful 3D model of the Earth against a black background, illustrating variations in gravity. North and South America are visible. Red areas show higher gravity, blue areas show lower gravity.