Comet: A Supercomputer for the 'Long Tail' of Science
October 21, 2015 | NSFEstimated reading time: 4 minutes
The San Diego Supercomputer Center (SDSC) at the University of California, San Diego this week formally launched "Comet," a new petascale supercomputer designed to transform scientific research by expanding computational access among a larger number of researchers and across a wider range of domains.
"The launch of Comet marks yet another stage in SDSC's leadership in the national cyberinfrastructure ecosystem," said Jim Kurose, assistant director of the National Science Foundation for Computer and Information Science and Engineering (CISE), during remarks Oct. 14 at the SDSC event. "Through this launch and the extraordinary computing capabilities of SDSC, the Center will continue to expand the frontiers of science and engineering, allowing researchers to open new windows into phenomena as vast as the universe and as small as nanoparticles."
The result of an NSF award valued at roughly $24 million, including hardware and operating funds, Comet is designed to meet the emerging requirements often referred to as the "long tail" of science--the idea that the large number of modest-sized computationally based research projects represent, in aggregate, a tremendous amount of research that can yield scientific advances and discovery.
Comet joins SDSC's Gordon supercomputer as another key resource within the NSF's XSEDE (eXtreme Science and Engineering Discovery Environment) computer resource-sharing system, which comprises the most advanced collection of integrated digital resources and services in the world.
In his remarks, Kurose noted that cyberinfrastructure--defined as a dynamic ecosystem consisting of advanced computing systems, data, software and, most importantly, people, all linked by high-speed networks--has increasingly become a critical component of discovery and innovation.
"It is essential for accelerating the pace of discovery and innovation in all fields of inquiry...and for the progress of science, engineering, national competitiveness, health and security," he said.
SDSC used the formal launch of Comet to also celebrate 30 years as a national resource for advanced computation.
"SDSC has been at the forefront of cyberinfrastructure since the center's beginning in 1985, as one of NSF's original supercomputer centers," Kurose said. "It has been a leader of the data science revolution as well. The work done at SDSC has not only provided insights into fundamental science but it has also included a strong dedication to K-12 educational outreach."
How SDSC's "Comet" Supercomputer Serves Science and Society
Comet is configured to help transform advanced computing by expanding access and capacity not only among research domains that typically rely on HPC--such as chemistry and biophysics--but among domains which are relatively new to supercomputers, such as genomics, finance and the social sciences. Some of the domains already being served by Comet include:
Astrophysics: Supercomputers can greatly accelerate timescales for researching the origins of the universe.
Neurosciences, Brain Research: SDSC's Neuroscience Gateways project will contribute to the national BRAIN Initiative announced by the Obama Administration to deepen our understanding of the human brain.
Social Sciences: Sociologists and political scientists are analyzing newly accessible data sets to study censorship of the press, factors that affect participation in the political process, and the properties of social networks.
Molecular Science: Studying the properties of lipids, proteins, nucleic acids, and small molecules can advance our understanding of biophysical processes at the atomic scale, leading to new drug designs and reducing disease.
DNA Nanostructures: Conducting nanoscale biomolecular research could lead to low-cost DNA sequencing technologies, and in turn create targeted drug delivery systems and help explain the molecular causes of disease.
Alternative Energy Solutions/New Materials Research: Finding new and more efficient solutions to energy harvesting, nanoporous membranes for water desalinization, solar thermal fuels and more.
Fluid Turbulent Physics: Supercomputers can create highly detailed simulations to track ocean currents or improve industry methods related to the discharge of pollutants or oil flow in pipelines.
Climate Change/Environmental Sciences: Modeling atmospheric aerosols, identified as influencing the chemical composition and radiative balance of the troposphere, has direct implications for our climate and public health.
Seismic Research/Disaster Prevention: Keys to hazard management for major earthquakes, hurricanes, and wildfires include the ability to predict a wide range of possibilities. Supercomputer-generated simulations are used to inform decision-making strategies.
The Tree of Life: Biologists construct phylogenetic trees to capture the evolutionary relationship between species, and help us better understand the functions and interactions of genes, the origin and spread of diseases, the co-evolution of hosts and parasites and migration of human populations.
Key Features of Comet:
- ~2 petaflops of overall peak performance--one million billion operations or calculations per second.
- Dell compute nodes using next-generation Intel Xeon processors, 27 racks of compute nodes totaling 1,944 nodes or 46,656 cores.
- 128 gigabytes of dynamic RAM and 320 GB of flash memory per standard compute node.
- 72 nodes per rack with full bisection InfiniBand FDR interconnect in each rack, and a 4:1 bisection cross-rack interconnect.
- Additional GPU and large-memory (1.5 Terabytes) nodes for applications such as visualization, molecular dynamics simulations, or de novo genome assembly.
- 7 petabytes of Lustre-based high-performance storage from Aeon, and 6 petabytes of durable storage for data reliability.
- First XSEDE production system to support high-performance virtualization.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Soaring Inference AI Demand Triggers Severe Nearline HDD Shortages; QLC SSD Shipments Poised for Breakout in 2026
09/16/2025 | TrendForceTrendForce’s latest investigations reveal that the massive data volumes generated by AI are straining the global infrastructure of data center storage.
Advanced Packaging-to-Board-Level Integration: Needs and Challenges
09/15/2025 | Devan Iyer and Matt Kelly, Global Electronics AssociationHPC data center markets now demand components with the highest processing and communication rates (low latencies and high bandwidth, often both simultaneously) and highest capacities with extreme requirements for advanced packaging solutions at both the component level and system level. Insatiable demands have been projected for heterogeneous compute, memory, storage, and data communications. Interconnect has become one of the most important pillars of compute for these systems.
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.