Toward Gant-voltage Generation Beyond 1000 Volts
October 22, 2015 | University of TokyoEstimated reading time: 1 minute
University of Tokyo researchers have succeeded in developing ferroelectric devices delivering a high voltage of 23 volts under visible light. This result is expected to contribute to clean energy generation from sunlight.
Semiconductor materials capable of converting light into electricity are utilized in photovoltaic cells. However, the voltage that can be generated by present semiconductor-based devices is of the order of a few volts at most. Recently it has been reported that high voltages can be generated in ferroelectric thin films, which has stimulated active research and development of photoelectric conversion devices using ferroelectric materials. However, multiple challenges remained, such as difficulty in establishing device design and still unknown principles behind power generation.
The research group of Associate Professor Yuji Noguchi, then-Project Researcher Ryotaro Inoue and Professor Masaru Miyayama at the Graduate School of Engineering demonstrated the generation of a high voltage from visible light using a crystal of the ferroelectric material barium titanate using a polarization wall with a few nanometers thickness between domains. In addition, the research group showed that by controlling the structure of the polarization wall is possible in principle to obtain huge voltages of over 1000 volts.
“This results obtained in this study may also be applicable to other polar materials such as zinc oxides and gallium nitride,” says Associate Professor Noguchi. He continues, “The combination of this research with conventional semiconductor photovoltaic systems may lead to increases in photoelectric conversion efficiency.”
Suggested Items
Taiwan's PCB Industry Chain Is Expected to Grow Steadily by 5.8% Annually in 2025
05/05/2025 | TPCAAccording to an analysis report jointly released by the Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute's International Industrial Science Institute, the total output value of Taiwan's printed circuit (PCB) industry chain will reach NT$1.22 trillion in 2024, with an annual growth rate of 8.1%.
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Exceeds Quarterly Profit Expectations as Electronics Segment Benefits from Semiconductor Demand
05/05/2025 | I-Connect007 Editorial TeamDuPont reported higher-than-expected earnings for the first quarter of 2025, supported by increased demand in its electronics and industrial segments. The company’s adjusted earnings per share came in at 79 cents, surpassing the average analyst estimate of 65 cents per share, according to data from LSEG.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.