Capacitor Breakthrough
October 26, 2015 | University of DelawareEstimated reading time: 2 minutes
For "Back to the Future" fans, this week marked a milestone that took three decades to reach.
Oct. 21, 2015 was the day that Doc Brown and Marty McFly landed in the future in their DeLorean, with time travel made possible by a “flux capacitor.”
While the flux capacitor still conjures sci-fi images, capacitors are now key components of portable electronics, computing systems, and electric vehicles.
In contrast to batteries, which offer high storage capacity but slow delivery of energy, capacitors provide fast delivery but poor storage capacity.
A great deal of effort has been devoted to improving this feature — known as energy density — of dielectric capacitors, which comprise an insulating material sandwiched between two conducting metal plates.
Now, a group of researchers at the University of Delaware and the Chinese Academy of Sciences has successfully used nanotechnology to achieve this goal.
The work is reported in a paper, “Dielectric Capacitors with Three-Dimensional Nanoscale Interdigital Electrodes for Energy Storage,” published in Science Advances, the first open-access, online-only journal of AAAS.
“With our approach, we achieved an energy density of about two watts per kilogram, which is significantly higher than that of other dielectric capacitor structures reported in the literature,” says Bingqing Wei, professor of mechanical engineering at UD.
“To our knowledge, this is the first time that 3D nanoscale interdigital electrodes have been realized in practice,” he adds. “With their high surface area relative to their size, carbon nanotubes embedded in uniquely designed and structured 3D architectures have enabled us to address the low ability of dielectric capacitors to store energy.”
One of the keys to the success of the new capacitor is an interdigitated design — similar to interwoven fingers between two hands with “gloves” — that dramatically decreases the distance between opposing electrodes and therefore increases the ability of the capacitor to store an electrical charge.
Another significant feature of the capacitors is that the unique new three-dimensional nanoscale electrode also offers high voltage breakdown, which means that the integrated dielectric material (alumina, Al2O3) does not easily fail in its intended function as an insulator.
“In contrast to previous versions, we expect our newly structured dielectric capacitors to be more suitable for field applications that require high energy density storage, such as accessory power supply and hybrid power systems,” Wei says.
About the research
Co-authors on the paper include Fangming Han, Guowen Meng, Fei Zhou, Li Song, Xinhua Li, Xiaoye Hu, Xiaoguang Zhu, Bing Wu and Bingqing Wei.
The work was funded by the National Key Basic Research Program of China, the National Natural Science Foundation of China, the CAS/SAFEA (Chinese Academy of Sciences/State AQ9 Administration of Foreign Experts Affairs) International Partnership Program for Creative Research Teams, and the Anhui Provincial Natural Science Foundation.
Wei was involved in experimental design and data analysis. The samples were prepared and characterized by his colleagues in China.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Global Citizenship: Together for a Perfect PCB Solution
09/10/2025 | Tom Yang -- Column: Global CitizenshipIf there’s one thing we’ve learned in the past few decades of electronics evolution, it’s that no region has a monopoly on excellence. Whether it’s materials science breakthroughs in Europe, manufacturing efficiencies in China, or design innovations in Silicon Valley, the PCB industry thrives on collaboration.
Dan's Biz Bookshelf: 'Apple in China: The Capture of the World’s Greatest Company'
09/04/2025 | Dan Beaulieu -- Column: Dan's Biz BookshelfMost of what we hear about Apple’s relationship with China is half-baked punditry or political noise. However, Patrick McGee’s "Apple in China: The Capture of the World’s Greatest Company" is a tour de force that peels back the PR polish and shows us what’s really going on behind that gleaming bitten fruit.
More Than a Competition: Instilling a Champion's Skill in IPC Masters China 2025
09/01/2025 | Evelyn Cui, Global Electronics Association—East AsiaNearly 500 elite professionals from the electronics industry, representing 18 provinces and municipalities across China, competed in the 2025 IPC Masters Competition China, March 26–28, in Pudong, Shanghai. A total of 114 contestants advanced to the practical competition after passing the IPC Standards Knowledge Competition. Sixty people competed in the Hand Soldering and Rework Competition (HSRC), 30 in the Cable and Wire Harness Assembly Competition (CWAC), and 24 in the Ball Grid Array/Bottom Termination Components (BGA/BTC) Rework Competition.
TTM Technologies: Bridging East and West with Strategic Expansion
08/25/2025 | Marcy LaRont, I-Connect007As global supply chains shift and demand for supply chain resiliency grows, TTM Technologies is expanding with purpose: bolstering its U.S. presence while maintaining a strong footprint in Asia. With recent moves in Wisconsin and Malaysia, the company is positioning itself to better support customers amid an evolving geopolitical landscape. In this interview, President and CEO of TTM Technologies Tom Edman discusses TTM’s expansion strategy, the future of manufacturing, and his planned retirement after his long tenure at the helm of the company.
China’s Rare Earth Exports to US Surge 660% After Trade Agreement
07/23/2025 | I-Connect007 Editorial TeamRare earth element exports from China to the U.S. rose by 660% monthly, according to information released by Beijing’s General Administration of Customs, MSN reported.