Advancing the Design and Modeling of Complex Systems
November 24, 2015 | DARPAEstimated reading time: 2 minutes
Complex interconnected systems are increasingly becoming part of everyday life in both military and civilian environments. In the military domain, air-dominance system-of-systems concepts, such as those being developed under DARPA’s SoSITE effort, envision manned and unmanned aircraft linked by networks that seamlessly share data and resources in real time. In civilian settings such as urban “smart cities”, critical infrastructure systems—water, power, transportation, communications and cyber—are similarly integrated within complex networks. Dynamic systems such as these promise capabilities that are greater than the mere sum of their parts, as well as enhanced resilience when challenged by adversaries or natural disasters. But they are difficult to model and cannot be systematically designed using today’s tools, which are simply not up to the task of assessing and predicting the complex interactions among system structures and behaviors that constantly change across time and space.
To overcome this challenge, DARPA has announced the Complex Adaptive System Composition and Design Environment (CASCADE) program. The goal of CASCADE is to advance and exploit novel mathematical techniques able to provide a deeper understanding of system component interactions and a unified view of system behaviors. The program also aims to develop a formal language for composing and designing complex adaptive systems.
“CASCADE aims to fundamentally change how we design systems for real-time resilient response within dynamic, unexpected environments,” said John Paschkewitz, DARPA program manager. “Existing modeling and design tools invoke static ‘playbook’ concepts that don’t adequately represent the complexity of, say, an airborne system of systems with its constantly changing variables, such as enemy jamming, bad weather, or loss of one or more aircraft. As another example, this program could inform the design of future forward-deployed military surgical capabilities by making sure the functions, structures, behaviors and constraints of the medical system—such as surgeons, helicopters, communication networks, transportation, time, and blood supply—are accurately modeled and understood.”
CASCADE could also help the Department of Defense fulfill its role of providing humanitarian assistance in response to a devastating earthquake, hurricane or other catastrophe, by developing comprehensive response models that account for the many components and interactions inherent in such missions, whether in urban or austere environs.
“We need new design and representation tools to ensure resilience of buildings, electricity, drinking water supply, healthcare, roads and sanitation when disaster strikes,” Paschkewitz said. “CASCADE could help develop models that would provide civil authorities, first responders and assisting military commanders with the sequence and timing of critical actions they need to take for saving lives and restoring critical infrastructure. In the stress following a major disaster, models that could do that would be invaluable.”
The CASCADE program seeks expertise in the following areas:
- Applied mathematics, especially in category theory, algebraic geometry and topology, and sheaf theory
- Operations research, control theory and planning, especially in stochastic and non-linear control
- Modeling and applications responsive to challenges in battlefield medicine logistics and platforms, adaptive logistics, reliability, and maintenance
- Search and rescue platforms and modeling
- Adaptive and resilient urban infrastructure
Suggested Items
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
Elementary Mr. Watson: Retro Routers vs. Modern Boards—The Silent Struggle on Your Screen
06/26/2025 | John Watson -- Column: Elementary, Mr. WatsonThere's a story about a young woman preparing a holiday ham. Before putting it in the pan, she cuts off the ends. When asked why, she shrugs and says, "That's how my mom always did it." She asks her mother, who gives the same answer. Eventually, the question reaches Grandma, who laughs and says, "Oh, I only cut the ends off because my pan was too small." This story is a powerful analogy for how many PCB designers approach routing today.
Siemens Turbocharges Semiconductor and PCB Design Portfolio with Generative and Agentic AI
06/24/2025 | SiemensAt the 2025 Design Automation Conference, Siemens Digital Industries Software today unveiled its AI-enhanced toolset for the EDA design flow.
Cadence AI Autorouter May Transform the Landscape
06/19/2025 | Andy Shaughnessy, Design007 MagazinePatrick Davis, product management director with Cadence Design Systems, discusses advancements in autorouting technology, including AI. He emphasizes a holistic approach that enhances placement and power distribution before routing. He points out that younger engineers seem more likely to embrace autorouting, while the veteran designers are still wary of giving up too much control. Will AI help autorouters finally gain industry-wide acceptance?
Beyond Design: The Metamorphosis of the PCB Router
06/18/2025 | Barry Olney -- Column: Beyond DesignThe traditional PCB design process is often time-consuming and labor-intensive. Routing a complex PCB layout can consume up to 30% of a designer’s time, and addressing this issue is not straightforward. We have all encountered this scenario: You spend hours setting the constraints and finally hit the Go button, only to be surprised by the lack of visual appeal and the obvious flaws in the result.