Doping Powers New Thermoelectric Material
November 27, 2015 | Northwestern UniversityEstimated reading time: 3 minutes
Kanatzidis' colleague Christopher M. Wolverton, a computational theorist, calculated the electronic structure of tin selenide. He found the electrical properties could be improved by adding a doping material.
"Tin selenide is very unusual, not only because of its exceedingly low thermal conductivity, but also because it has many conduction lanes," said Wolverton, a senior author of the paper and professor of materials science and engineering in the McCormick School of Engineering and Applied Science. "Our calculations said if the material could be doped, its thermal power and electrical conductivity would increase. But we didn't know what to use as a dopant."
Sodium was the first dopant the researchers tried, and it produced the results they were looking for. "Chris' computations opened our eyes to doping," Kanatzidis said. He and Zhao successfully grew crystals of the new doped material.
The researchers also were pleased to see that adding sodium did not affect the already very low thermal conductivity of the material. It stayed low, so the heat stays on one side of the thermoelectric material. Electrons like to be in a low-energy state, so they move from the hot (high-energy) side to the cool side. The hot side becomes positive, and the cool side becomes negative, creating a voltage.
"Previously, there was no obvious path for finding improved thermoelectrics," Wolverton said. "Now we have discovered a few useful knobs to turn as we develop new materials."
The efficiency of waste heat conversion in thermoelectrics is reflected by its "figure of merit," called ZT. In April 2014, the researchers reported that tin selenide exhibits a ZT of 2.6 at around 650 degrees Celsius. That was the highest ZT to date -- a world record. But the undoped material produced that record-high ZT only at that temperature. (There is a ZT for every temperature.)
The new doped material produces high ZTs across a broad temperature range, from room temperature to 500 degrees Celsius. Thus, the average ZT of the doped material is much higher, resulting in higher conversion efficiency.
"Now we have record-high ZTs across a broad range of temperatures," Kanatzidis said. "The larger the temperature difference in a thermoelectric device, the greater the efficiency."
Page 2 of 2Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.