MIT engineers have designed what may be the Band-Aid of the future: a sticky, stretchy, gel-like material that can incorporate temperature sensors, LED lights, and other electronics, as well as tiny, drug-delivering reservoirs and channels. The “smart wound dressing” releases medicine in response to changes in skin temperature and can be designed to light up if, say, medicine is running low.
When the dressing is applied to a highly flexible area, such as the elbow or knee, it stretches with the body, keeping the embedded electronics functional and intact.
The key to the design is a hydrogel matrix designed by Xuanhe Zhao, the Robert N. Noyce Career Development Associate Professor in MIT’s Department of Mechanical Engineering. The hydrogel, which Zhao detailed earlier this month, is a rubbery material, mostly composed of water, designed to bond strongly to surfaces such as gold, titanium, aluminum, silicon, glass, and ceramic.
In a new paper published in the journal Advanced Materials, the team reports embedding various electronics within the hydrogel, such as conductive wires, semiconductor chips, LED lights, and temperature sensors. Zhao says electronics coated in hydrogel may be used not just on the surface of the skin but also inside the body, for example as implanted, biocompatible glucose sensors, or even soft, compliant neural probes.
“Electronics are usually hard and dry, but the human body is soft and wet. These two systems have drastically different properties,” Zhao says. “If you want to put electronics in close contact with the human body for applications such as health care monitoring and drug delivery, it is highly desirable to make the electronic devices soft and stretchable to fit the environment of the human body. That’s the motivation for stretchable hydrogel electronics.”
Zhao’s co-authors on the paper are graduate students Shaoting Lin, Hyunwoo Yuk, German Alberto Parada, postdoc Teng Zhang, Hyunwoo Koo from Samsung Display, and Cunjiang Yu from the University of Houston.
MIT researcher Xuanhe Zhao discusses a newly developed hydrogel and how it could be used to implant electronic devices in the body.
Page 1 of 2
Suggested Items
KYZEN’s Adam Klett to Present at 2025 SMTA Electronics in Harsh Environments Conference
05/05/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, announced today that Director of Science Adam Klett, PhD will present during the technical conference at the 2025 SMTA Electronics in Harsh Environments Conference.
Datest Expands Presence in the Upper Midwest with Omni-Tec Partnership
05/05/2025 | DatestDatest, a trusted leader in advanced testing, engineering, inspection, and failure analysis services, is proud to announce its partnership with Gary Krieg of Omni-Tec, Inc. as its official sales representative in the Upper Midwest.
DuPont Exceeds Quarterly Profit Expectations as Electronics Segment Benefits from Semiconductor Demand
05/05/2025 | I-Connect007 Editorial TeamDuPont reported higher-than-expected earnings for the first quarter of 2025, supported by increased demand in its electronics and industrial segments. The company’s adjusted earnings per share came in at 79 cents, surpassing the average analyst estimate of 65 cents per share, according to data from LSEG.
DuPont Reports First Quarter 2025 Results
05/02/2025 | PRNewswireDuPont announced its financial results for the first quarter ended March 31, 2025.
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.