Novel Devices, Technologies Provide Insights into Seizure Control, Surgical Targets
December 7, 2015 | American Epilepsy SocietyEstimated reading time: 3 minutes
Three studies to be presented at the American Epilepsy Society's (AES) 69th Annual Meeting describe novel devices and technologies that could reshape current understanding of the complex mechanisms underpinning seizure development in the brain.
Two of the three studies unveil information about the neural networks that produce and propagate seizure activity, providing information that could help refine and target surgical interventions.
In the first study, (abstract 2.076|A.05) researchers from the University of Pennsylvania describe an array of transparent electrodes that can capture high-resolution images of neuronal activity in a live animal brain while simultaneously gathering electrophysiological information about neuron function.
The team previously demonstrated the technology in a single graphene electrode affixed to laboratory samples of brain tissue. According to the authors, graphene is an ideal material because of its flexibility, high electrical conductivity and opportunity to customize features on its surface.
Now, the researchers describe their use of novel nanofabrication techniques to construct graphene-based neural arrays for recording and stimulation. Experiments in live, anesthetized rats revealed that the electrodes are capable of recording epileptiform activity with a high signal-to-noise ratio, high spatial and temporal resolution, and without light-induced artifacts.
"This technology could allow researchers to study in unprecedented detail how epileptic circuits function and change over time," says author Duygu Kuzum, Ph.D., a researcher at the University of Pennsylvania.
A second study (abstract 2.081|A.06) explores new techniques for mapping the neural networks that give rise to and exacerbate seizure activity, providing information that could potentially help boost the success of epilepsy surgery. Researchers from the Cleveland Clinic studied 15 patients with drug-resistant epilepsy who underwent a procedure called stereoelectroencephalography (SEEG), in which electrodes are surgically implanted into the brain to record electrical activity and map out putative epileptic networks. Researchers then used fMRI to record the patients' brain activity during direct electrical stimulation of the networks. Central branch points, or nodes, in the network were removed by surgery or laser ablation. According to the authors, the method produced robust maps of epileptic networks and facilitated successful surgical outcomes in 14 of the 15 patients.
Page 1 of 2
Suggested Items
IDC: Global Wrist-Worn Device Shipments Grew 10.5% in Q1 2025
06/25/2025 | IDCAccording to the latest data from the Worldwide Quarterly Wearable Device Tracker, released by International Data Corporation (IDC), the global wrist-worn device market shipped 45.6 million units in the first quarter of 2025, a year-on-year (YoY) increase of 10.5%.
Global Dry Film Photoresist Market Set for Robust Growth with Expanding Semiconductor Ecosystem
06/24/2025 | PRNewswireIn 2024, the global market size of Dry Film Photoresist was estimated to be worth US$939 million and is forecast to reach approximately US$1191 million by 2031 with a CAGR of 3.5% during the forecast period 2025-2031.
Zero Defects International Partner, Epoch International, Announces Sale on Precision Control Systems
06/21/2025 | Zero Defects InternationalZero Defects International partner, EPOCH INTERNATIONAL, has announced significantly reduced overstock pricing for a large quantity of precision industrial motor, actuator, and sensor control systems.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.
Keysight, NTT, and NTT Innovative Devices Achieve 280 Gbps World Record Data Rate with Sub-Terahertz for 6G
06/17/2025 | Keysight TechnologiesKeysight Technologies, Inc. in collaboration with NTT Corporation and NTT Innovative Devices Corporation (NTT Innovative Devices), today announced a groundbreaking world record in data rate achieved using sub-THz frequencies.