UCL’s ExoMars PanCam Kit One Step Closer to Mars
December 11, 2015 | University College LondonEstimated reading time: 3 minutes
The UCL-made ‘structural-thermal model’ of the ExoMars PanCam instrument for the joint ESA-Roscosmos (Russian space agency) 2018 rover mission leaves UCL Mullard Space Science Laboratory (MSSL) today for Airbus UK in Stevenage. This is the first of several steps on the way to Mars - in 2016, UCL will deliver engineering- and flight models. The flight model will be the actual instrument which travels to Mars where it will identify promising targets for the mission.
“It’s exciting to finally be delivering our first hardware”, said Professor Andrew Coates, who leads the international PanCam team as Principal Investigator (UCL MSSL). “Ever since we proposed the instrument in 2003 following the loss of Beagle 2, we have been looking forward to imaging on the surface of Mars, and this is the first tangible step after years of preparation.”
The PanCam team is international, with key contributions from Germany, Switzerland, Austria and the UK.
“This has been a huge team effort, with more to come”, said Project manager Craig Leff (UCL MSSL). “Our team at MSSL has led the building and testing of the structural-thermal model, incorporating some hardware from our German and Welsh colleagues as well, which has been useful practice for the real thing. We look forward to the coming year or two and the challenges of producing a tested, calibrated flight model PanCam to send to Mars.”
The purpose of the structural-thermal model is to make sure everything fits together to test computer models of the rover’s thermal environment. This allows changes to be made to help ensure the rover’s survival in the harsh Martian conditions, which can range between just above zero during the day to -100 degrees C at night.
“The temperature on Mars is a particular engineering challenge for PanCam, as it is in an exposed position at the top of the mast, and the external temperature range is very wide, so it’s important that the thermal models are accurate”, said Mr Leff.
Page 1 of 2
Suggested Items
Excellon Installs COBRA Hybrid Laser at Innovative Circuits
06/23/2025 | ExcellonExcellon is pleased to announce the successful installation of a second COBRA Hybrid Laser System at Innovative Circuits, located in Alpharetta, Georgia. The Excellon COBRA Hybrid Laser System uniquely combines both UV and CO₂ (IR) laser sources on a single platform—making it ideal for high-density prototype and production printed circuit boards (PCBs).
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Sierra Circuits Boosts High Precision PCB Manufacturing with Schmoll Technology
06/16/2025 | Schmoll MaschinenSierra Circuits has seen increased success in production of multilayer HDI boards and high-speed signal architectures through the integration of a range of Schmoll Maschinen systems. The company’s current setup includes four MXY-6 drilling machines, two LM2 routing models, and a semi-automatic Optiflex II innerlayer punch.
Driving Innovation: Traceability in PCB Production
05/29/2025 | Kurt Palmer -- Column: Driving InnovationTraceability across the entire printed circuit board production process is an increasingly important topic among established manufacturers and companies considering new PCB facilities. The reasons are apparent: Automatic loading of part programs, connection with MES systems and collection of production data, and compliance with Industry 4.0 requirements