UMD Researchers Use a Simple Stretch to Create Powerful Pseudomagnetic Fields in Graphene
December 14, 2015 | University of MarylandEstimated reading time: 2 minutes
While it seems simple enough to stretch a material in two directions—like tugging on the ends of a rubber band—the team discovered that the graphene sheet needed to not only be stretched, but that the sheet must also be shaped in a specific way. A simple rectangle or square of graphene, when stretched, would not create a pseudomagnetic field.
But, when the graphene was formed into a tapered shape like a trapezoid or pennant, pulling on the ends produces a strain that steadily increases along the length of the ribbon, and this constant strain gradient gives a uniform, and controllable, pseudomagnetic field. And the more strain applied to the material, the greater the magnetic force. The team’s model, which was verified across three computational models, predicts a tunable field magnitude from zero to 200 Tesla.
This type of controlled pseudomagnetic field creates the potential for new ways to study the motion of electrons in a controllable high magnetic field. Currently, there is no sustainable method for generating magnetic fields of this magnitude. The induced fields – if made more spatially uniform – could potentially enable new concepts of electronics, such as “valleytronics,” in which electrons separate between different valleys in the graphene band structure.
Page 2 of 2Suggested Items
Taiwan's PCB Industry Chain Is Expected to Grow Steadily by 5.8% Annually in 2025
05/05/2025 | TPCAAccording to an analysis report jointly released by the Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute's International Industrial Science Institute, the total output value of Taiwan's printed circuit (PCB) industry chain will reach NT$1.22 trillion in 2024, with an annual growth rate of 8.1%.
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Exceeds Quarterly Profit Expectations as Electronics Segment Benefits from Semiconductor Demand
05/05/2025 | I-Connect007 Editorial TeamDuPont reported higher-than-expected earnings for the first quarter of 2025, supported by increased demand in its electronics and industrial segments. The company’s adjusted earnings per share came in at 79 cents, surpassing the average analyst estimate of 65 cents per share, according to data from LSEG.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.