New Industrial Possibilities for Nanoporous Thin Films
December 15, 2015 | KU LeuvenEstimated reading time: 2 minutes
Metal-organic frameworks (MOFs) are a new type of materials with nanoscale pores. Bioscience engineers from KU Leuven have developed an alternative method that produces these materials in the form of very thin films, so that they can easily be used for high-tech applications such as microchips.
Metal-organic frameworks (MOFs) are a recently developed type of materials that consist of a nanoporous grid of both organic molecules and metal ions. MOFs take shape as the organic molecules push the metal ions apart, so that a regular pattern of tiny holes or nanopores develops.
The size of the pores can be tuned at the nanoscale level (with a nanometre being a billionth of a metre). The internal surface of an MOF, formed by all these pores, varies in size from 1,000 to 5,000 square metres per gram of material. MOFs can be seen as microscopic sponges that can absorb a lot of material.
This property makes MOFs interesting in terms of applications. “Researchers are already looking into these applications”, says Professor Rob Ameloot from the KU Leuven Centre for Surface Chemistry and Catalysis. “They are examining the use of MOFs as catalysts to accelerate chemical reactions of guest molecules in the MOF pores. Another possible application is gas storage, as the internal surface of MOFs can hold large amounts."
"So far, some applications were not considered feasible due to the production procedure for MOFs. The conventional method involves lab-scale wet chemistry – the traditional chemistry with solutions and solvents. The end result is a powder. For integrated, nanoscale applications, the particles of that powder are too large, while a method with solutions is not pure enough. In the case of gas sensors, for instance, the MOF material has to be deposited as a thin film over the surface of the electrical circuit. That is not possible if you use the conventional production procedure.”
Lead author Ivo Stassen set out to find a production method other than wet chemistry. He used vapours and gases instead of liquids. “Vapour-phase deposition is already a common method to produce high-tech devices. We are the first to use this method for the production of these highly porous materials. We first deposit layers of zinc and let them react with the vapour of the organic material. The organic material permeates the zinc, the volume of the whole expands, and it is fully converted into a material with a regular structure and nanopores”, Stassen explains. To fine-tune the procedure, Stassen is collaborating with the Leuven-based research centre imec, which specialises in nanoelectronics. KU Leuven and imec have jointly submitted a patent application.
“This alternative production method opens up new possibilities for MOFs in terms of applications and industries. Chemical vapour deposition is a common technique in nanofabrication. Therefore, new MOF applications can be developed relatively quickly: gas sensors, nanochip components, and improved batteries”, Stassen concludes.
This research was carried out in collaboration with imec, CSIRO (Australia), and MBI (Singapore).
Suggested Items
STMicroelectronics, Metalenz Sign a New License Agreement to Accelerate Metasurface Optics Adoption
07/14/2025 | STMicroelectronicsSTMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications and Metalenz, the pioneer of metasurface optics, announced a new license agreement.
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Global PCB Connections: Embedded Components—The Future of High-performance PCB Design
06/19/2025 | Jerome Larez -- Column: Global PCB ConnectionsA promising advancement in this space is the integration of embedded components directly within the PCB substrate. Embedded components—such as resistors, capacitors, and even semiconductors—can be placed within the internal layers of the PCB rather than mounted on the surface. This enables designers to maximize available real estate and improve performance, reliability, and manufacturability.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
SMTA Releases Final Batch of Training Resources Donated by Bob Willis
05/29/2025 | SMTAThe Surface Mount Technology Association (SMTA) announces the release of several more webinars, poster sets, and photo libraries to conclude a generous donation from renowned industry expert Bob Willis.