NUS Takes the Quantum Leap into Space
December 28, 2015 | NUSEstimated reading time: 3 minutes
Galassia, an experimental cube-satellite, was developed by a team of 30 final-year engineering students pursuing the Satellite System Design track under the Design-Centric Programme of the NUS Faculty of Engineering, together with six research engineers over a period of about four years beginning in 2012.
This satellite will carry two payloads. The first is a quantum science payload developed and flown in a satellite for the first time by NUS’ Centre for Quantum Technologies (CQT). It will test out a quantum-based communication concept using Small Photon-Entangling Quantum System (SPEQS). The second is a Total Electron Content (TEC) electronic payload designed by NUS Engineering students. This payload will measure the total number of electrons above Singapore in the ionosphere, knowledge of which can be used to improve GPS navigation as well as radio communication.
The operational mission life of this satellite is expected to be between six to 12 months, during which payload data will be collected and analysed.
Professor Goh Cher Hiang, Project Director of the NUS Satellite Programme at the NUS Faculty of Engineering, said, “Creating a space-ready engineering system goes beyond nuts and bolts. The Galassia project brings together students from various engineering disciplines to apply what they have learnt in a real-life setting, and challenges them to innovate and push boundaries. The successful launch of Galassia is a strong endorsement of NUS’ space engineering education and we hope that this will also inspire more talented students who are passionate about space R&D to pursue their interest in this field.”
Kent Ridge 1: The “eyes” in space
Kent Ridge 1 is a hyper-spectral imaging micro-satellite designed to conduct scientific experimentation and analysis of Earth's surface characteristics. With the capability to break down colour into its constituent components, this satellite is able to collect information on what is happening to the planet when sunlight is decomposed into its constituent wavelengths. This is useful for detecting changes in soil, vegetation, volcanoes, water temperatures and fire.
Most hyper-spectral cameras flown in space are large, bulky, complex and expensive. They are usually carried in big spacecrafts with mass of about one tonne. In comparison, Kent Ridge 1 is a micro-satellite with a mass of 77.2-kilogramme, much smaller than conventional hyper-spectral satellites.
The operational mission life of this satellite is expected to be two years, during which scientific experiments will be carried out.
Page 2 of 3
Suggested Items
TT Electronics Achieves ISO 13485 Medical Certification at Mexicali EMS Facility
06/27/2025 | TT ElectronicsThis milestone underscores TT Electronics’ commitment to delivering high-quality, compliant, and reliable manufacturing solutions to its global customers in healthcare and life sciences.
Elementary Mr. Watson: Retro Routers vs. Modern Boards—The Silent Struggle on Your Screen
06/26/2025 | John Watson -- Column: Elementary, Mr. WatsonThere's a story about a young woman preparing a holiday ham. Before putting it in the pan, she cuts off the ends. When asked why, she shrugs and says, "That's how my mom always did it." She asks her mother, who gives the same answer. Eventually, the question reaches Grandma, who laughs and says, "Oh, I only cut the ends off because my pan was too small." This story is a powerful analogy for how many PCB designers approach routing today.
Stephen Winchell Appointed DARPA Director
06/02/2025 | DARPAStephen Winchell was sworn in today as the 24th director of the Defense Advanced Research Projects Agency.
Uyemura Expands Engineering Team in Great Lakes Region
05/30/2025 | UyemuraAndrew Jin has joined Uyemura’s Engineering Team as Technical Service Engineer for the Midwest. Jin was formerly with Sensient Technologies, Flavors and Extracts Division, where his focus was CO2 emissions and water quality; he also did capital project work with production equipment.
Defining the Ideal PCB Design Data Output
05/27/2025 | Stephen V. Chavez, Siemens EDAAt the heart of delivering successful, manufacturable printed circuit boards lies a vital question: What should your design data output package include to best support manufacturing? The answer: It depends. There are many factors to consider regarding the specific category you’re designing for—such as mil/aero, space, medical, and commercial. Other factors that need to be considered are requirements and engineering intent.