Scientists Create Atomically Thin Metallic Boron
December 31, 2015 | Argonne National LaboratoryEstimated reading time: 4 minutes
A team of scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, Northwestern University and Stony Brook University has, for the first time, created a two-dimensional sheet of boron – a material known as borophene.
Scientists have been interested in two-dimensional materials for their unique characteristics, particularly involving their electronic properties. Borophene is an unusual material because it shows many metallic properties at the nanoscale even though three-dimensional, or bulk, boron is nonmetallic and semiconducting.
Because borophene is both metallic and atomically thin, it holds promise for possible applications ranging from electronics to photovoltaics, said Argonne nanoscientist Nathan Guisinger, who led the experiment. “No bulk form of elemental boron has this metal-like behavior.”
Like its periodic table neighbor carbon, which appears in nature in forms ranging from humble graphite to precious diamond, boron wears a number of different faces, called allotropes. But that’s where the similarities end. While graphite is composed of stacks of two-dimensional sheets that can be peeled off one at a time, there is no such analogous process for making two-dimensional boron.
“Borophenes are extremely intriguing because they are quite different from previously studied two-dimensional materials,” Guisinger said. “And because they don’t appear in nature, the challenge involved designing an experiment to produce them synthetically in our lab.”
Although at least 16 bulk allotropes of boron are known, scientists had never before been able to make a whole sheet, or monolayer, of borophene. “It’s only in the recent past that researchers have been able to make tiny bits of boron at the nanoscale,” said Andrew Mannix, a Northwestern graduate student and first author of the study. “This is a brand new material with exciting properties that we are just beginning to investigate.”
“Boron has a rich and storied history and a very complicated chemistry,” added Mark Hersam, professor of materials science and engineering at Northwestern’s McCormick School of Engineering, who helped advise Mannix. “This is something that could have easily not worked, but Andy had the courage and persistence to make it happen.”
Page 1 of 2
Suggested Items
Electroninks Acquires Complete UTDots Advanced Materials Nanoinks Portfolio and IP
05/19/2025 | ElectroninksElectroninks, the leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, announced it has officially completed its full acquisition of UTDots products and IP into its portfolio, further expanding its offerings in digital printing for high-performance applications.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
From DuPont to Qnity: A Bold Move in Electronics Materials
05/14/2025 | Marcy LaRont, I-Connect007DuPont has announced the intended spinoff of a public independent electronics company, Qnity, which will serve as a solutions provider to the semiconductor and electronics industries to enhance competitiveness and innovation in advanced computing, smart technologies, and connectivity. In this interview, Jon Kemp, Qnity CEO-elect and current president of DuPont’s Electronics business, shares his insights on the strategic separation from DuPont.
SMC Korea 2025 to Spotlight Next-Generation Memory and Materials Innovation amid AI Boom
05/13/2025 | SEMIThe Strategic Materials Conference (SMC) Korea 2025 is set to convene on May 14 at the Suwon Convention Center in Gyeonggi-do, South Korea, bringing together leading experts and innovators to highlight the critical role of materials innovation in addressing the performance, efficiency, and scalability requirements of AI-enabled semiconductor devices.
SEMI Applauds New Bill to Clarify Tax Credit Eligibility for Critical Semiconductor Suppliers Under U.S. CHIPS Act
05/12/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, announced support of the Strengthening Essential Manufacturing and Industrial Investment Act (SEMI Investment Act), which clarifies that critical materials suppliers to semiconductor manufacturers are eligible for the Advanced Manufacturing Investment Tax Credit (“Section 48D”) created by the United States CHIPS and Science Act.