An Opportunity to Increase Power Devices Performance
January 8, 2016 | Yole DéveloppementEstimated reading time: 3 minutes
OUTLINES:
- SiC, GaN and other Wide Band GaP (WBG) materials represent new choices for power electronics applications.
- SiC n-type wafers will increase to US$ 110 million by 2020 with a 21% CAGR.
- Many players are competing on the GaN-on-Si epiwafer open market. What will happen?
- Not only is there GaN-on-Si, but also GaN-on-GaN. What's the status of bulk GaN wafer production?
When people think about Wide Band Gap (WBG) materials for power electronics applications, they usually think of GaN or SiC. This is a not a surprise: indeed SiC and GaN are currently the most advanced WBG technologies for power electronics applications. However, there are materials with an even larger band gap which can further increase power device performance. What is the development status of such innovative technologies? Are there already some products available on the market? What is the added-value of such materials?
Yole Développement (Yole) proposes a comprehensive overview of the whole WBG solutions dedicated to the power electronics industry. This survey is entitled SiC, GaN and other WBG materials for power electronics applications. Including a detailed analysis of the most advanced WBG materials, SiC and GaN, Yole’s report also highlights the added-value of disruptive technologies such as Ga2O3, diamond and AlN. Yole’s analysts detail the status of such new solutions and the related technology roadmap. The “More than Moore” market research and strategy consulting company also presents the technical and market challenges facing WBG players.
As the Si technology is reaching the theoretical limits, new semiconductor materials called wide band gap (WBG) is becoming the new choice for power electronics applications. Different WBG materials are SiC, GaN, Ga2O3, Diamond and AlN. The development status of these WBG materials varies from one to other. Indeed SiC and GaN-on-Si based power devices are commercially available today; the development of GaN-on-GaN power devices is ongoing; Ga2O3, diamond and AlN power devices are just at a primitive stage.
Page 1 of 2
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
Breakthrough in Non-Contact Solder Removal Earns Kurtz Ersa 2025 Mexico Technology Award at SMTA Guadalajara
09/18/2025 | Kurtz Ersa Inc.Kurtz Ersa Inc., a leading supplier of electronics production equipment, is proud to announce that it has been awarded a 2025 Mexico Technology Award in the category of Rework & Repair for its HR 600P Automatic Rework System.
A.R.T. Invests in Latest Equipment to Further Enhance Electronics Training Facilities
09/17/2025 | A.R.T. Ltd.Advanced Rework Technology Ltd. (A.R.T.), a leading independent IPC-accredited training provider, has announced a series of new equipment investments at its state-of-the-art training centre.
Richardson Electronics Appoints Daniel Albers to Drive Made-in-USA Contract Manufacturing Expansion
09/17/2025 | Globe NewswireRichardson Electronics, Ltd., a global provider of engineered solutions for the green energy, power management, and custom display markets, announced the appointment of Daniel Albers to spearhead business development for its expanded, Made-in-USA contract manufacturing efforts.
STMicroelectronics to Advance Next-generation Chip Manufacturing Technology with New PLP Pilot Line in Tours, France
09/17/2025 | STMicroelectronicsSTMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications, today announced new details regarding the development of the next generations of Panel-Level Packaging (PLP) technology through a pilot line in its Tours site, France, which is expected to be operational in Q3 2026.