Why are Flexible Computer Screens Taking so Long to Develop?
January 21, 2016 | University of CambridgeEstimated reading time: 3 minutes
Whatever technology is used, there are many individual components crammed into a relatively small space. Many smartphone displays contain more than three million subpixels, for example. Bending these components introduces strain, which can tear electrical connections and peel apart layers. Current displays use a rigid piece of glass, to keep the display safe from the mechanical strains of the outside world. Something that, by design, is not an option in flexible displays.
Organic semiconductors – the chemicals that directly produce light in OLED displays – have the additional problem of being highly sensitive to both water vapour and oxygen, gases that can pass relatively easily through thin plastic films. This can result in faded and dead pixels, leaving a less than desirable-looking result.
There’s also the challenge of the large-scale manufacturing of these circuits. Plastics can be tricky materials to work with. They often swell and shrink in response to water and heat, and it can be difficult to persuade materials to bond to it. In a manufacturing environment, where precise alignment and high temperature processing are critical, this can cause major issues.
Finally, it’s not just flexible displays that need to be developed. The components needed to power and operate the display also need to be incorporated into any overall design, placing constraints on the kinds of shape and size currently achievable.
What next?
Scientists in Japan have demonstrated how to make electrical circuits on plastic thinner than the width of human hair in an attempt to reduce the impact of bending on circuit performance. And research into flexible batteries has started to become more prevalent, too.
Developing solutions to these problems is part of a broader area of active research, as the science and technology underlying flexible displays is also applicable to many other fields, such as biomedical devices and solar energy. While the challenges remain, the technology edges closer to the point where devices such as flexible displays will become ubiquitous in our everyday lives.
Page 2 of 2Suggested Items
Zhen Ding Promotes Digital Transformation and Embraces AI Business Opportunities
06/06/2025 | Zhen Ding TechnologyOn May 27, 2025, General Manager Chen-Fu Chien of Zhen Ding Technology Group was invited to attend the "2025 Two Thousand Forum" held by The CommonWealth Magazine.
Leidos Using Quantum Technology to Thwart GPS Jamming
06/05/2025 | PRNewswireSusceptibility to jamming is a significant military vulnerability of the Global Positioning System (GPS) signal. Through a Defense Innovation Unit contract, Leidos is developing an alternative navigation technology that measures variations in the Earth's magnetic field and harnesses the quantum properties of nitrogen in diamonds.
Growing Demand for Mid-Size Displays Opens New Opportunities for FMM-Free OLED Technologies
06/05/2025 | TrendForceTrendForce’s latest report on the display industry reveals that OLED technology—valued for its self-emissive structure, high contrast ratio, and lightweight design—continues to expand its market presence, primarily in small-size applications such as smartphones.
Orbel Corporation Integrates Schmoll Direct Imaging
06/04/2025 | Schmoll AmericaOrbel Corporation in Easton, PA, proudly becomes the first PCM facility in the U.S. equipped with Schmoll’s MDI Direct Imaging system. This installation empowers Orbel to support customers with greater precision and quality.
BAE Systems Unveils Comprehensive Line of M-Code GPS Receivers at Joint Navigation Conference
06/04/2025 | PRNewswireBAE Systems unveiled a diverse line of M-Code Global Positioning System (GPS) receiver solutions at the Joint Navigation Conference in Cincinnati this week, rounding out an extensive line of products that ensure U.S. warfighters have the most dependable GPS systems available across sea, land, and air.