Molecular-like Photochemistry from Semiconductor Nanocrystals
January 22, 2016 | North Carolina State UniversityEstimated reading time: 1 minute
Researchers from North Carolina State University have demonstrated the transfer of triplet exciton energy from semiconductor nanocrystals to surface-bound molecular acceptors, extending the lifetime of the originally prepared excited state by six orders of magnitude. This finding has implications for fields ranging from solar energy conversion to photochemical synthesis to optoelectronics to light therapy for cancer treatment.
Excitons are the electron/hole pairs formed in semiconductor nanocrystals upon absorption of light, temporarily storing it as chemical energy. In solar cells, for example, the excitons transport energy through the material so that it can be collected and converted into electricity.
In terms of photochemistry, the major drawback to using most semiconductor nanocrystals as photosensitizers lies in their short excited state lifetimes -- typically tens of nanoseconds -- which renders them inadequate to drive photochemical reactions. NC State chemistry professor Felix Castellano, along with postdoc Cedric Mongin and graduate student Sofia Garakyaraghi, wondered if it would be possible to extend the semiconductor nanocrystal excited state lifetime to time scales long enough to perform chemistry.
"The fundamental question was, 'Can we take a nanoparticle excited state with a lifetime of tens of nanoseconds and extend it through sensitization,'" says Castellano. "If we take the original nanocrystal excited state and transfer its energy to a triplet acceptor on the surface of the nanomaterial, then the molecular triplet excited state you create should have a long enough lifetime to promote chemical reactions. This would also suggest that semiconductor nanocrystals exhibit molecular-like behavior."
Page 1 of 2
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
Alternative Manufacturing, Inc. (AMI) Announces Commitment to Excellence in Industrial, Defense, Aerospace, Renewables, and Robotics Markets
09/16/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing, Inc. (AMI), a 100% employee-owned contract manufacturer, proudly reaffirms its leadership in the electronics manufacturing services (EMS) industry with a continued commitment to delivering high-quality PCBAs and box builds across the industrial, defense, aerospace, renewable energy, and robotics markets.
Elementary Mr. Watson: Running the Signal Gauntlet
09/11/2025 | John Watson -- Column: Elementary, Mr. WatsonIf you’ve ever run a military obstacle course, you know it’s less “fun fitness challenge” and more “how can we inflict as much pain in the shortest time possible?” You start fresh—chest out, lungs full of confidence, thinking you might even look good doing this—and 10 seconds later, you’re questioning all your life choices.
Hitachi Unveils $1B U.S. Investment in Critical Grid Infrastructure
09/05/2025 | Hitachi EnergyHitachi Energy, a wholly owned subsidiary of Hitachi, Ltd., and global leader in electrification, today announced a historic investment of more than $1 billion USD to expand the production of critical electrical grid infrastructure in the United States.
Ferric Launches New Integrated Voltage Regulator for AI and High-Performance Processors
08/27/2025 | BUSINESS WIREFe1766 delivers an unprecedented 160 A in the industry’s smallest IVR footprint, redefining chip-level and system-level power delivery for the AI era.