Clarifying the Role of Magnetism in High-Temperature Superconductors
January 26, 2016 | RIKENEstimated reading time: 1 minute
A collaboration of scientists from the RIKEN SPring-8 Center, Osaka University, the Japan Atomic Energy Agency, and the Japan Synchrotron Radiation Research Institute have published research clarifying the role of magnetism in a new type of high-temperature superconductor. The research, just published as a Rapid Communication in Physical Review B, gives us a better understanding of the atomic-scale behavior of these materials. Physicists hope that, by understanding how these materials superconduct at relatively high temperature, they can eventually learn enough to make materials that superconduct close to room temperature.
It is known that the phenomenon of superconductivity—where materials conduct electricity without resistance—arises when pairs of electrons become coupled together or "paired". With traditional superconductors, this pairing arises due to vibrations of the ions in the structure. But this is not always the case: there are other types of materials, such as cuprate superconductors and a relatively new class of superconductor iron-pnictide superconductors, that was discovered by a group led by Hideo Hosono at the Tokyo Institute of Technology, where magnetism may be the paring mechanism.
According to Alfred Baron, the leader of the Materials Dynamics Lab at RIKEN SPring-8 Center, “The question we addressed was how the atomic vibrations in the iron pnictides are affected by magnetism. This was especially interesting because atomic vibrations are understood to be driving force of the older type of low-temperature superconductors, while magnetism is considered to be the probable driving mechanism of the new, high-temperature, superconductivity. Thus, it was in some sense, an overlap of the old with the new.”
Using a technique called inelastic x-ray scattering on two beamlines of the powerful SPring-8 synchrotron facility in Harima, Japan, the group was able to measure the dynamics in specially prepared single-domain samples. Comparing their measurements to calculations then suggested that magnetic fluctuations play an important role in the atomic vibrations. Naoki Murai, the graduate student spearheading the measurement explains, "By very gently pressing the material in the correct direction we were able to observe effects due to the onset of magnetic order". Says Baron, "One of the nice things about this work is that it provides a basis for describing atomic vibrations in this whole class of materials—do calculations with magnetism and then add fluctuations".
Baron says the collaboration will continue to investigate the properties of these fascinating materials, and also, more generally, the interaction of magnetism and atomic vibrations.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.