An Alternative to Platinum: Iron-Nitrogen Compounds as Catalysts in Graphene
January 28, 2016 | HZBEstimated reading time: 3 minutes
Teams at HZB and TU Darmstadt have produced a cost-effective catalyst material for fuel cells using a new preparation process which they analysed in detail. It consists of iron-nitrogen complexes embedded in tiny islands of graphene only a few nanometres in diameter. It is only the FeN4 centres that provide the excellent catalytic efficiency – approaching that of platinum. The results are interesting for solar fuels research as well and have been published in the Journal of the American Chemical Society.
Fuel cells convert the chemical energy stored in hydrogen (H2) into electrical energy by electrochemically “combusting" hydrogen gas with oxygen (O2) from the air into water (H2O), thereby generating electricity. As a result, future electric automobiles might be operated quite well with fuel cells instead of with heavy batteries. But for “cold” combustion of hydrogen and oxygen to function well, the anode and cathode of the fuel cell must be coated with extremely active catalysts. The problem is that the platinum-based catalysts employed for this contribute about 25 per cent of the total fuel-cell costs.
However, iron-nitrogen complexes in graphene (known as Fe-N-C catalysts) have been achieving levels of activity comparable to Pt/C catalysts for several years already. “Systematic investigation of Fe-N-C catalysts was difficult though, since most approaches for preparing the materials lead to heterogeneous compounds. These contain various species of iron compounds such as iron carbides or nitrides besides the intended FeN4 centres”, explains Sebastian Fiechter of HZB.
High density of catalytically active centres
“We had already developed a new preparation method at HZB a few years ago to produce an inexpensive catalyst material from organometallic compounds such as iron or cobalt porphyrin”, reports Peter Bogdanoff, HZB. Ulrike Kramm and Iris Herrmann-Geppert improved the process for producing it as part of their doctoral studies at HZB. As a result, the metal-N-C catalysts developed at HZB held the world record for the highest density of catalytically active centres of various nitro-metallic compounds up to about 2011. However, it remained unclear as to which inorganic compounds influenced the catalytic efficiency. The team was now able to determine this.
Purification process removes interfering compounds
The highlight in the current work is a purification process (a combination of thermal treatment with a subsequent etching step) by which the proportion of metallic compounds that interfere with catalytic activity can be substantially reduced, even for catalysts that are highly heterogeneous. The interesting thing here is that the activity increases enormously! Ulrike Kramm, who has since become a junior professor at TU Darmstadt, was successful in purifying several catalysts to such an extent that all the iron present in the graphene layers was exclusively in form of complexes made of iron and four nitrogen atoms (FeN4). The scientists thereby disproved the hypothesis debated among experts by which improvement in the activity of the FeN4 centres only resulted from promoters, as they are known, such as iron nanoparticles.
Now verified: FeN4 centres provide the high catalytic efficiency even without promoters
“To check this hypothesis, we employed numerous complex measurement techniques like Mößbauer spectroscopy, electron paramagnetic resonance spectroscopy and X-ray absorption spectroscopy at BESSY II. These enabled us to precisely survey the atomic structure of the catalytic centres”, Ulrike Kramm reports.
“The purification process enables us now to create catalysts having exclusively FeN4 centres. This allows us to subsequently select compounds to be added afterwards as promoters that further improve the activity level or stability of these catalysts”, as Ulrike Kramm summarises her research approach at TU Darmstadt.
Sebastian Fiechter and Peter Bogdanoff are continuing their research at HZB on novel catalysts, especially in regard to hydrogen generation using sunlight. “We can also use the insights into how these metal-N-C catalysts work in our on-going development of catalysing materials for solar-based hydrogen production at HZB,” says Fiechter.
Together, the research activities at HZB and TU Darmstadt could enable the development of a complete regenerative energy cycle, using solar hydrogen in low cost fuel cells, thus producing electricity without climate gas emission.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Alternative Manufacturing, Inc. (AMI) Announces Commitment to Excellence in Industrial, Defense, Aerospace, Renewables, and Robotics Markets
09/16/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing, Inc. (AMI), a 100% employee-owned contract manufacturer, proudly reaffirms its leadership in the electronics manufacturing services (EMS) industry with a continued commitment to delivering high-quality PCBAs and box builds across the industrial, defense, aerospace, renewable energy, and robotics markets.
Sustainability and Selective Soldering
09/15/2025 | Dr. Samuel J. McMaster, Pillarhouse InternationalSustainability is more than just a buzzword for the electronics industry; it’s a key goal for all manufacturing processes. This is more than a box-ticking exercise or simply doing a small part for environmentally friendly processes. Moving toward sustainable solutions drives innovation and operational efficiency.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
Integrating Uniplate PLBCu6 With the Digital Factory Suite
09/12/2025 | Giovanni Obino and Andreas Schatz, MKS' AtotechPrinted circuit board manufacturing is rapidly changing, driven by miniaturization, stringent reliability requirements, and growing pressure for sustainable production. Meeting these challenges requires more than incremental improvements; it demands a combination of precise equipment and real-time process intelligence. The pairing of Uniplate® PLBCu6 with the Digital Factory Suite (DFS) demonstrates how hardware and software can work together to create more responsive, resource-efficient manufacturing.