New Galaxy-hunting Sky Camera Sees Redder Better
February 3, 2016 | LBLEstimated reading time: 5 minutes
Berkeley Lab supplied the charge-coupled devices (CCDs) that capture light and the readout system that translates the light into images, and Yale was responsible for new mechanical components and software. David Rabinowitz at Yale oversaw the software development, working closely with NOAO astronomers and engineers.
Mosaic-3 is equipped with four CCDs, each measuring about 6 square inches and containing 16 megapixels. Each pixel in the CCDs is about 100 times larger in area than a pixel in an iPhone 6 camera sensor, and each Mosaic-3 CCD is about 50 times larger in area than the iPhone 6 camera sensor.
“It’s really the light-gathering power that matters,” said Armin Karcher, a Berkeley Lab design engineer who built a compact, flexible readout system for the camera.
The large pixel size and overall CCD size are key in gathering light, and the 0.5-millimeter thickness of the CCDs helps the CCDs see deeper into the infrared wavelengths.
The moon, as seen in the infrared with the new Mosaic-3 camera on the Mayall Telescope at Kitt Peak National Observatory. This zoom view resolves features as small as one mile. Mosaic-3’s primary mission for the next two years is to scan about one-eighth of the sky, collecting infrared images of millions of galaxies and stars. (Image credit: Arjun Dey/NOAO, David Rabinowitz/Yale, David Sprayberry/NOAO, Bob Marshall/NOAO, Behzad Abareshi/NOAO, Christian Soto/NOAO; Mosiac-3 Commissioning Team)
Steve Holland, an engineer at Berkeley Lab who invented these red-sensitive CCDs, said he was already engaged in the design of similar CCDs for the DESI project when Mosaic-3 launched. “It was serendipitous,” he said.
Christopher Bebek, who manages Berkeley Lab’s CCD group and served as the lab’s liaison on the Mosaic-3 project, added, “This was like a dress rehearsal for detectors and electronics for DESI.” An updated CCD design is now in production for DESI, which will require 20 of these CCDs for its spectrograph system.
The Mosaic-3 instrument upgrade was funded by the U.S. Department of Energy Office of Science through the DESI project, and by NOAO. The DESI project is managed by the Lawrence Berkeley National Laboratory.
Page 2 of 2Suggested Items
Hon Hai Research Institute Partners with Taiwan Academic Research Institute and KAUST to Participate in CLEO 2025
05/30/2025 | FoxconnThe research team of the Semiconductor Division of Hon Hai Research Institute, together with the research teams of National Taiwan University and King Abdullah University of Science and Technology in Saudi Arabia, has successfully made breakthroughs in multi-wavelength μ -LED technology to achieve high-speed visible light communication and optical interconnection between chips.
ICEFlight to Accelerate Maturation of Cryogenic Technologies for Hydrogen-Powered Flight
05/27/2025 | GKN AerospaceGKN Aerospace is one of the project partners in ICEFlight (Innovative Cryogenic Electric Flight), a project aiming to contribute to the development of hydrogen-powered flight.
Vertical Aerospace Makes Aviation History with Piloted eVTOL Flight in Open Airspace
05/27/2025 | BUSINESS WIREVertical Aerospace, a global aerospace and technology company that is pioneering electric aviation, announced it has made European aviation history with the first-ever piloted wingborne flight of a winged electric vertical take-off and landing (eVTOL) aircraft in open airspace.
Dymax to Showcase Light-Cure Solutions at The European Battery Show 2025
05/23/2025 | Dymax CorporationDymax, a global manufacturer of rapid light-curing materials and equipment, will exhibit at The European Battery Show 2025 in Stand 4-C60
Northrop Grumman Navigation Technology Completes Hypersonic Test Flights
05/14/2025 | Northrop GrummanNorthrop Grumman Corporation successfully completed two test flights of its Advanced Hypersonic Technology Inertial Measurement Unit at hypersonic speed, leveraging Stratolaunch’s reusable hypersonic airplane, Talon-A.