Footsteps Could Power Mobile Devices
February 8, 2016 | University of Wisconsin-MadisonEstimated reading time: 4 minutes
The researchers' bubbler device - which contains no moving mechanical parts - consists of two flat plates separated by a small gap that's filled with a conductive liquid. The bottom plate has tiny holes through it as well as a dielectric-coated electrode on its surface. Pressurized gas blows up through the holes in the bottom plate, forming bubbles on each hole. These bubbles grow until they're large enough to touch the top plate, which causes the bubble to collapse, and this extremely fast process of bubbles growing and collapsing rapidly repeats itself. As the gas bubbles push the conductive fluid back and forth across the bottom surface, the flow of that fluid generates electrical charge motion and gives rise to electrical current due to reverse electrowetting.
The researchers say their bubbler method can potentially generate extremely high power densities, which enables smaller and lighter energy harvesting devices that can be coupled to a broad range of energy sources.
The proof-of-concept bubbler device generated around 10 watts per square meter in preliminary experiments, and theoretical estimates show that up to 10 kilowatts per square meter might be possible, according to Krupenkin.
"The bubbler really shines at producing high power densities," he says. "For this type of mechanical energy harvesting, the bubbler has a promise to achieve by far the highest power density ever demonstrated."
Krupenkin and Taylor are seeking to partner with industry and commercialize a footwear-embedded energy harvester through their startup company, InStep NanoPower.
The harvester could directly power various mobile devices through a charging cable or it could be integrated with a broad range of electronic devices embedded in a shoe, such as Wi-Fi hot spot that acts as a "middleman" between mobile devices and a wireless network. The latter requires no cables, dramatically cuts the power requirements of wireless mobile devices, and can make a cellphone battery last 10 times longer between charges.
"For a smartphone, just the energy cost of radio-frequency transmission back and forth between the phone and the tower is a tremendous contributor to the total drain of the battery," Krupenkin says.
Additional authors on the Scientific Reports paper include UW-Madison mechanical engineering graduate students Tsung-Hsing Hsu and Supone Manakasettharn.
Page 2 of 2Suggested Items
Green Circuits to Exhibit Full-Service Electronics Manufacturing Solutions at 2025 SMD Symposium
07/02/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is pleased to announce its participation in the 2025 SMD Symposium, taking place August 5-7 at the Von Braun Center in Huntsville, Alabama.
RTX, Shield AI Partner to Develop New Defense Capabilities
07/01/2025 | RTXRTX and Shield AI announced a new partnership to integrate Shield AI capabilities into select RTX defense products, like loitering munitions and sensors. This collaboration will deliver enhanced, autonomous capabilities to US and allied defense forces.
Lockheed Martin Completes Acquisition of Amentum’s Rapid Solutions Portfolio
07/01/2025 | Lockheed MartinLockheed Martin has closed its acquisition of the Rapid Solutions business of Amentum, an engineering and technology solutions company.
Saab Receives Order for Ground-Based Air Defense from Sweden
07/01/2025 | SaabSaab has received an order from the Swedish Defense Materiel Administration (FMV) for the mobile short-range air defense solution RBS 70 NG with missiles.
Kitron Strengthens Order Backlog with EUR 11 Million Contract for Defense Communication
07/01/2025 | KitronKitron has received an order valued at EUR 11 million to produce advanced military communication products destined for the European market.