Breakthrough for Lab-on-a-chip Material
February 24, 2016 | KTH Royal Institute of TechnologyEstimated reading time: 2 minutes

Researchers at KTH Royal Institute of Technology have developed a new polymer suited for photostructuring — a technique for creating micro-scale shapes. The discovery opens new possibilities for medical diagnostics, biophotonics and 3D printing.
The so-called off-stoichiometry thiol-enes (OSTE) polymer was developed at KTH specifically to meet the need for a material suitable for both experimental prototyping and large-scale manufacturing of labs-on-a-chip — or, miniaturized bioanalytical laboratories.
"It can be very useful in a variety of applications such as near-patient diagnostic tools," says one of the developers, Tommy Haraldsson, docent in the department Micro and Nanosystems at KTH.
One of the unique qualities of OSTE polymer is that its surface is chemically reactive without adding anything or preparing the surface in a special way. Now, another benefit has been revealed.
In the February issue of Nature publishing group journal Microsystems and Nanoengineering, the authors report the discovery that upon exposure to UV light, the molecules of the polymer arrange themselves in a manner that significantly enhances photostructuring.
Photostructuring is a technique by which UV light is used to solidify micro-scale 3D shapes in liquid polymer. "These microstructures can guide light, such as with waveguides. Or they can be used to control fluid flow, such as with microfluidics channels," says Gaspard Pardon, a post-doc researcher in Micro and Nanosystems at KTH.
Up until now, the major class of polymers to which the KTH material belongs, thiol-ene copolymers, has been considered to be inappropriate for photostructuring.
"With this new understanding of the underlying mechanisms and material properties available, we can also anticipate future exciting applications," Pardon says.
"Biophotonics is one such area," Pardon says. Biophotonics harnesses light and other forms of radiant energy to understand the inner workings of cells and tissues. This approach enables researchers to see, measure, analyze and manipulate biological materials in ways never before possible.
"We also started testing the 3D printing of our new material. By producing 3D structures that have the material's special surface chemical properties, it would allow the polymer to be used in a variety of new applications," he says.
The OSTE polymer was developed over the last five years to bridge the “lab-to-fab-gap”, and create an alternative to suboptimal off-the-shelf materials that are now used for conceptual lab-on-a-chip device development. The predominant materials used today are known to have poor mechanical or chemical properties, such as absorption of small molecules and difficulties with permanent surface modification.
With the KTH material however it is possible to easily add different layers of material or to modify the surface properties for handling microscopic flows of fluids, without using glue or otherwise treating the material surface. Another possibility is that the material allows simple change in the surface's wettability and chemistry.
"We can also integrate sensitive biomaterials and bioreagents, and the manufacturing cost is potentially reduced because the material is so easy to work with," Pardon says.
Suggested Items
EIPC Summer Conference 2025: PCB Innovation in Edinburgh
04/18/2025 | EIPCEIPC have very wisely selected this wonderful city in Scotland as the venue for their Summer Conference on June 3-4. Whilst delegates will be distilling the proven information imparted by the speakers in the day, in the evening they will be free spirits at the Conference Dinner.
Transforming the Future of Mobility: DuPont Unveils Silver Nanowire Products in South Korea
04/17/2025 | DuPontDuPont will showcase its state-of-the-art products that incorporate silver nanowire technologies in Hall D, Booth A31 at Electronics Manufacturing Korea (EMK) and Automotive World Korea (AWK) exhibitions from April 16 to 18.
Best Papers from SMTA International Announced
04/10/2025 | SMTAThe SMTA is pleased to announce the Best Papers from SMTA International 2024. The winners were selected by members of the conference technical committee. Awards are given for "Best of Proceedings" as well as "Best Practical and Applications-Based Knowledge" categories. A plaque is given to primary authors of all winning papers for these exceptional achievements.
Thales & Saildrone Integrate Blue Sentry Array with Uncrewed Systems
04/07/2025 | ThalesThales Australia and Saildrone announce successful integration of the Thales Blue Sentry array and Saildrone’s uncrewed systems. A potent new national security capability, now proven at sea
Knocking Down the Bone Pile: Basics of Component Lead Tinning
04/02/2025 | Nash Bell -- Column: Knocking Down the Bone PileThe component lead tinning process serves several critical functions, including removing gold plating, mitigation of tin whiskers, reconditioning of component solderability issues, and alloy conversion from lead-free (Pb-free) to tin-lead or from tin-lead to lead-free for RoHS compliance. We will cover each of these topics in more detail in upcoming columns.