New NASA CubeSat to Test Techniques for Eliminating the Noise
February 25, 2016 | NASAEstimated reading time: 2 minutes

It’s getting noisier and noisier out there and now the cacophony of broadcast and other communications signals has begun to seriously interfere with important Earth science research.
A NASA team at the Goddard Space Flight Center in Greenbelt, Maryland, is collaborating with Ohio State University and NASA’s Jet Propulsion Laboratory in Pasadena, California, to build and launch a new CubeSat mission that will test next-generation techniques for detecting and discarding radio-frequency interference (RFI). RFI is caused by satellite TV, automatic door openers, and other communications technology that operate at microwave frequencies.
Funded by NASA’s In-Space Validation of Earth Science Technologies program, the CubeSat Radiometer Radio Frequency Interference Technology Validation (CubeRRT) specifically will evaluate a specialized digital-based spectrometer equipped with sophisticated algorithms that can detect and mitigate the radio interference that spills over and ends up as noise in scientific data.
Goddard is charged with developing the instrument’s front-end microwave electronics and overseeing the instrument’s integration onto the spacecraft. JPL, meanwhile, is building the instrument’s backend digital electronics. The Wallops Flight Facility on Virginia’s Eastern Shore is handling ground-system design and operations, while Ohio State’s Joel Johnson is leading this effort. In addition, Ohio State is implementing the dual-helical antenna and procuring the spacecraft bus from the Boulder, Colorado-based Blue Canyon Technologies.
‘Noise’ Affects Radiometry
This manmade “noise” has proven especially troublesome for space-based radiometers, which use a portion of the microwave spectrum to passively gather data about moisture, atmospheric water vapor, sea surface temperatures, and surface winds, among other climate-related conditions.
Although specific frequency bands have been set aside for Earth observation and radio astronomy, the spectrum for commercial use is becoming increasingly crowded, overrunning the science-reserved bands and accelerating demands that more spectrum be set aside for commercial uses.
“As these sources expand over larger areas and occupy additional spectrum, it will be increasingly difficult to perform radiometry without an RFI-mitigation capability,” said Jeffrey Piepmeier, a Goddard engineer and CubeRRT team member.
Picking Up Where SMAP Left Off
Expected to launch in 2018, the 6U CubeSat that’s roughly the size of a cereal box will pick up where other RFI-mitigation technology-development efforts have left off, Piepmeier added.
NASA’s Soil Moisture Active Passive (SMAP) mission, for example, carries a state-of-the-art “smart” microwave radiometer equipped with one of the most sophisticated signal-processing systems ever developed by Goddard. SMAP, however, is tuned to a particular frequency band —1.4 GHz or “L-Band” — the wavelength ideal for detecting soil moisture.
With CubeRRT, however, the team plans to test techniques designed to mitigate RFI at higher frequencies — particularly in the 6 to 40 GHz range. These frequencies are ideal for passively gathering data about other conditions important to climate research.
“Successful mitigation not only will open the possibility of microwave radiometry in any RFI-intensive environment, but also will allow future systems to operate over a larger bandwidth, resulting in lower measurement noise,” Piepmeier said. “This wasn’t a problem 20 years ago, and it’s just going to get worse.”
Suggested Items
Facing the Future: The Role of 5G and Beyond in Shaping PCB Demand
05/13/2025 | Prashant Patel -- Column: Facing the FutureInnovations that push the boundaries of connectivity shape the future of technology, processing power, and miniaturization. 5G and emerging 6G technologies are critical in transforming industries from telecommunications and healthcare to autonomous systems. This affects the printed circuit board (PCB) industry, where demand for high-performance, miniaturized, and advanced PCBs is surging. This column explores the key applications of 5G and beyond, the challenges in designing high-frequency PCBs, the effects of miniaturization, industry collaborations, and opportunities for North American companies in this space.
StratEdge LPA-Series Semiconductor Packages Take Center Stage at CS Mantech and Space Tech Expo USA
05/07/2025 | StratEdgeStratEdge Corporation will display its thermally efficient Leaded Power Amplifier (LPA) packages in Booth 805 at CS Mantech.
Elementary Mr. Watson: Navigating RF—A Glide Path Approach to Design Success
04/24/2025 | John Watson -- Column: Elementary, Mr. WatsonOn a flight, I can always tell when we begin our descent because that subtle drop in my stomach tells me the altitude has changed. Landing an airplane involves a gradual, precise process called the glide path. It descends at the correct speed and 3-degree angle to touch down smoothly and safely on the runway without bouncing or coming to a sudden stop. Pilots use specialized tools like the Instrument Landing System (ILS) or GPS to stay on the correct path. Lights on the ground, called PAPI lights, help pilots know if they are too high or too low.
Designers Notebook: Layer Stackup Planning for RF Circuit Boards
04/17/2025 | Vern Solberg -- Column: Designer's NotebookWhen designing multiple layer circuits requiring impedance control, the circuit board designer will work closely with an engineering specialist cognizant of RF printed circuit board design and layout, including mixed-signal applications.
Northrop Grumman to Equip Australian C-130J Fleet with Radio Frequency Countermeasures System
04/07/2025 | Northrop GrummanNorthrop Grumman Corporation has been selected by the Royal Australian Air Force (RAAF) to provide the AN/ALQ-251 advanced radio frequency countermeasures system for its C-130J airlifter fleet.