Record Efficiency with Tandem Solar Cells
March 4, 2016 | TU EindhovenEstimated reading time: 1 minute

On Thursday Alice Furlan receives her PhD for her study in which she experimented with stacking different types of material layers in flexible, thin solar cells. By combining these with a thin layer of silicon into a ‘tandem solar cell’ she, along with researchers from TU Delft, achieved a record level of efficiency in this kind of hybrid solar cell.
Flexible, plastic solar cells are an attractive alternative to the current standard crystalline silicon solar cells (with their characteristic gray-blue color). Using organic materials makes for easier and cheaper production while the printable, bendable character means they can be used in a wide variety of situations. The problem, however, is the yield.
Plastic combination
In her PhD thesis, Alice Furlan, PhD student in the Molecular Materials and Nanosystems group of professor René Janssen at the Department of Chemical Engineering, tested how you can best combine two or three different layers of semi-conductive plastic. Given that each type of plastic absorbs a different color light, the idea is that by combining these, you can utilize a larger portion of the incoming sunlight. Furlan also looked at the electrical connections between the different layers, where losses tend to be greatest.
Marriage
She hit the jackpot of her research together with colleagues from TU Delft, combining the Eindhoven plastic cells with thin layers of amorphous silicon to a ‘tandem solar cell’. This ‘marriage’ of two different kinds of absorption material – silicon and plastic – led to an efficiency of 13.2%. Never before had such cells generated such a high yield. The findings have been published in the journal Advanced Materials.
Combining strengths
Where the plastic used is mainly a strong absorber of infrared light, the silicon converts light from the visible and ultraviolet spectrum. In this way the method combines the aforementioned advantages of plastics with the broad absorption property of silicon. For the science researchers themselves there was also a kind of ‘marriage’: two disciplines (plastic and silicon solar cells) joining forces where they would normally have worked fully independently of each other.
Curriculum Vitae
Alice Furlan (1987, Italy) studied Materials Engineering at the University of Trieste in Italy. As an Erasmus student she was able to study for a year at TU Delft and follow an internship at the Molecular Materials and Nanosystems group of prof.dr.ir. René Janssen at TU Eindhoven. In 2012 she began her PhD in this group.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.