Time-Based Electrocardiogram (ECG) Readout Chip for Wearable Applications
March 4, 2016 | Holst CentreEstimated reading time: 1 minute

Nanoelectronics research center imec and Holst Centre, an open-innovation initiative set-up by imec and TNO, present a 0.6V ECG readout chip in 40nm technology based on time-domain circuit techniques. The chip maintains consistent beat detection capabilities, even under movement (~40mVpp), paving the way to a low cost, low power multi-sensor Systems-on-Chip (SoCs) solution for wearable medical applications.
There is a clear need for emerging applications in personal healthcare to add more digital signal processing capabilities and memory storage within the system itself. While today's digital ICs and memory ICs benefit from technology scaling in terms of power and area, this has yet to be achieved for analog readout electronics. Current state-of the-art analog circuit techniques don't result in a significantly reduced area in scaled technologies, and due to the accompanied reduced supply voltage (VDD) with scaled technologies, the analog front-end readout chip faces significant challenges in combining a large dynamic range with small size and low power consumption.
The new ECG readout chip is only 0.015mm2 implemented in TSMC 40nm CMOS. It can handle up to 40mVpp AC sigma and up to 300mV DC-electrode offset while consuming only 3.3μW from a 0.6V supply. By acquiring an ECG signal from the noise-stress database, the system does not saturate and is able to maintain a consistent beat detection capability even in presence of vigorous motion (~40mVpp). This was achieved by implementing a time-domain-based readout architecture, which leverages the benefits of technology scaling and it avoids the need for area intensive analog circuitry, such as high-gain amplifiers and passives. The readout chip achieves performance that is comparable with current state-of-the-art implementations at a fraction of the area.
"Our breakthrough readout ECG chip paves the way to low-cost, low-power multi-sensor systems for ambulatory medical applications," stated Nick Van Helleputte, team leader biomedical circuits at imec. "Furthermore, it opens additional innovation paths for beyond 40nm analog front-end design, leveraging the power and area benefits of scaled technology in digital architectures."
Suggested Items
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
MICROOLED Announces Partnership with Vortex Optics and Brand New US Headquarters
05/02/2025 | BUSINESS WIREMICROOLED Inc., the leading global supplier of AMOLED displays, is proud to announce their partnership with Vortex Optics to advance the development of high-performance weapon sights for optical sighting systems.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
Elephantech, Logitech Together Drive Disruptive Electronics Innovation
05/01/2025 | ElephantechElephantech Inc. announced a groundbreaking collaboration with Logitech International to revolutionize peripherals manufacturing and the printed circuit board (PCB) industry.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.