Biochip Offers Leukocyte Counting for HIV Diagnosis
March 15, 2016 | University of Illinois College of EngineeringEstimated reading time: 2 minutes
"In response to this challenge, we had developed a technique to selectively deplete target leukocytes," Hassan added. "And our biochip takes whole blood as input, eliminating the need of off-chip sample preparation and effectively reducing the assay time as well."
In addition to the microfluidic "capture chamber," the new chip incorporates separate ports for lysing reagents and quenching buffers that preserve the leukocytes for counting by the microfabricated electrodes. Specific leukocytes like CD4 T cells get captured as they interact with the antibodies in the capture chamber; a second counter recounts the remaining leukocytes. The difference in the respective cell counts give the concentration of the cells captured.
In clinical trials, the differential immuno-capture biochip achieved more than 90 per cent correlation with a flow cytometer for both CD4 T cells for CD8 T cell counts using HIV infected blood samples. The biochip can also be adapted to enumerate other specific cell types such as somatic cells or cells from tissue or liquid biopsies.
The novel biosensor has the potential to be an automated portable blood cell counter for point-of-care applications in developed and resource-limited regions worldwide. Bashir's group is working on miniaturizing the setup to make the technology handheld, as well as designing a cartridge that can be mass-produced.
Page 2 of 2Suggested Items
IPC Announces New Training Course: PCB Design for Military & Aerospace Applications
12/23/2024 | IPCIPC announced the launch of a new training course: PCB Design for Military & Aerospace Applications.
eCADSTAR Sets New Standards for Compact PCB Design with Etched Inductor Parts
06/12/2024 | ZukenZuken announces the 2024 release of eCADSTAR, Zuken’s next-generation PCB design system for small and medium businesses. The new release includes a number of improvements ranging from enhanced design reuse, simplified revision tracking and more robust schematic design.
Elementary, Mr. Watson: Ensuring Design Integrity
03/28/2024 | John Watson -- Column: Elementary, Mr. WatsonBack in February, many of us watched the "Big Game." It reminded me of the saying, “It's not how you start that is important, but rather how you finish." It is perfectly okay when you are talking about sports, you get off to a bad first half and need to recover in the second half. However, when it comes to PCB design, this is not a good practice. If things start badly, they usually don't recover. They continue down that same path, costing more money and losing design time.
The Pulse: New Designer’s (Partial) Guide to Fabrication
01/31/2024 | Martyn Gaudion -- Column: The PulsePCB designers fresh to the industry may think that once the schematic is loaded into CAD and routed out into XY data, the finished PCB is an “exact” copy of their XY data. That’s not an unreasonable assumption for basic designs. Here, I’ll outline some of a designer’s considerations related to signal integrity as designs become more complex.
Three Things to Improve High-Speed PCB Signoff, Part 2
09/27/2023 | Brad Griffin, Cadence Design SystemsAnother challenge for SerDes is losses within the channel design. At high speeds, dielectric material can be very lossy, making the appropriate selection of the right material, length, etc., critical for the channel. Many questions about stackup, trace widths, and height from the ground plane need to be defined up front. Simulating a signal with a topology explorer tool extracted from the design can be used to set up and run sweep parameters and push min/max length/spacing values into the Allegro schematic constraint manager (system capture).