Advanced Energy Storage Material Gets Unprecedented Nanoscale Analysis
March 21, 2016 | ORNLEstimated reading time: 3 minutes

Researchers at the Department of Energy's Oak Ridge National Laboratory have combined advanced in-situ microscopy and theoretical calculations to uncover important clues to the properties of a promising next-generation energy storage material for supercapacitors and batteries.
ORNL's Fluid Interface Reactions, Structures and Transport (FIRST) research team, using scanning probe microscopy made available through the Center for Nanophase Materials Sciences (CNMS) user program, have observed for the first time at the nanoscale and in a liquid environment how ions move and diffuse between layers of a two-dimensional electrode during electrochemical cycling. This migration is critical to understanding how energy is stored in the material, called MXene, and what drives its exceptional energy storage properties.
"We have developed a technique for liquid environments that allows us to track how ions enter the interlayer spaces. There is very little information on how this actually happens," said Nina Balke, one of a team of researchers working with Drexel University's Yury Gogotsi in the FIRST Center, a DOE Office of Science Energy Frontier Research Center.
"The energy storage properties have been characterized on a microscopic scale, but no one knows what happens in the active material on the nanoscale in terms of ion insertion and how this affects stresses and strains in the material," Balke said.
The so-called MXene material – which acts as a two-dimensional electrode that could be fabricated with the flexibility of a sheet of paper – is based on MAX-phase ceramics, which have been studied for decades. Chemical removal of the “A” layer leaves two-dimensional flakes composed of transition metal layers – the “M” – sandwiching carbon or nitrogen layers (the “X”) in the resulting MXene, which physically resembles graphite.
These MXenes, which have exhibited very high capacitance, or ability to store electrical charge, have only recently been explored as an energy storage medium for advanced batteries.
"The interaction and charge transfer of the ion and the MXene layers is very important for its performance as an energy storage medium. The adsorption processes drive interesting phenomena that govern the mechanisms we observed through scanning probe microscopy," said FIRST researcher Jeremy Come.
The researchers explored how the ions enter the material, how they move once inside the materials and how they interact with the active material. For example, if cations, which are positively charged, are introduced into the negatively charged MXene material, the material contracts, becoming stiffer.
That observation laid the groundwork for the scanning probe microscopy-based nanoscale characterization. The researchers measured the local changes in stiffness when ions enter the material. There is a direct correlation with the diffusion pattern of ions and the stiffness of the material.
Page 1 of 2
Suggested Items
Foxconn's Tiger Leap Combining Nature and Technology in Ecological Roof Garden
04/23/2025 | FoxconnHon Hai Technology Group, the world's largest technology manufacturing and service provider, has actively responded to the United Nations Sustainable Development Goals (SDGs).
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Bridging the Gap Between PCB Designers and Fabricators
04/03/2025 | Stephen V. Chavez, Siemens EDAWith today’s advanced EDA tools, designing complex PCBs in the virtual world does not necessarily mean they can be built in the real world. This makes the relationship between a PCB designer and a fabricator pivotal to the success of a project. In keeping with solid design for manufacturing (DFM) practices, clear and frequent communication is needed to dial and lock in design constraints that meet expectations while addressing manufacturing concerns.
Hitachi Announces Completion of New Production Facility for Semiconductor Manufacturing Equipment
04/01/2025 | JCN NewswireHitachi High-Tech Corporation announced that the new production facility for semiconductormanufacturing equipment (etch systems), which had been under construction since December 2023 in the Kasado area (Kudamatsu City, Yamaguchi Prefecture), was completed and started the operation on March 17, 2025.
Paige Fiet: From Emerging Engineer to Quality at TTM
03/19/2025 | Marcy LaRont, PCB007 MagazinePaige Fiet is a graduate of the IPC Emerging Engineer program and now works at TTM Technologies in Logan, Utah. She was an IPC Student Board Member and has been a columnist for I-Connect007. She is a stellar example and an encouragement to other young engineers about how to be successful in your early career.