Flexible, Cost-effective and Efficient LED Lighting Panels and Solar Cells
March 22, 2016 | CORDISEstimated reading time: 2 minutes
The project set out to find innovative solutions and develop new technologies to reduce the manufacturing costs of LED lighting panels, solar cells, and other organic electronic devices. Its most important contribution is the development and scaling up of manufacturing processes for new barrier materials and transparent electrodes that are used in advanced flexible optoelectronics.
Transparent electrodes to reduce cost and improve efficiency
Three electrodes-on-flexible substrates, using thin silver, metal fibers, or carbon nanotubes, are either anticipated to start production this year or are already being developed on a commercial scale. Tests were carried out on the new electrodes with different types of optoelectronic devices, using rolls measuring 100 metres in length. The use of such roll-to-roll (R2R) processing is comparable to the methods used for newspaper printing. The new electrodes produced through this method have demonstrated that they are suitable for complex solar cells and light sources.
Crucially the innovative processing methods hold the potential to make solar cells and light sources less expensive in the future. This would bring benefits to consumers but would also facilitate the growth of more environmentally friendly lighting solutions, thus contributing to the European Union’s ambitious climate change objectives.
The electrodes developed by the project are technically as good as the electrodes currently used by the lighting industry that are made indium tin oxide. However, they are cheaper to produce and do not depend on the use of indium. Importantly this does not compromise effectiveness, as the new electrodes are able support a stable light source over a wide area and attain an efficiency of 25 lumens/W. This is comparable to the relatively slower sheet-to-sheet manufacturing process used to produce similar devices.
Additionally, the project consortium also devised new techniques to ensure that the new electrodes are able to operate even when they are bent repeatedly, a test that has the potential to become an industry standard.
Page 1 of 2
Suggested Items
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
Commerce Secretary Howard Lutnick Visits TSMC Arizona Fabrication Facility for Third Fab Ground Breaking
05/02/2025 | U.S. Department of CommerceU.S. Secretary of Commerce Howard Lutnick visited the Taiwan Semiconductor Manufacturing Company (TSMC) semiconductor fabrication facility in Phoenix, Arizona where the company broke ground on a third fab facility.
SIA Welcomes Legislation to Strengthen U.S. Semiconductor Manufacturing Credit
05/02/2025 | SIAThe Semiconductor Industry Association (SIA) released the following statement from SIA President and CEO John Neuffer welcoming House introduction of Building Advanced Semiconductors Investment Credit (BASIC) Act.
INEMI Smart Manufacturing Tech Topic Series: Enhancing Yield and Quality with Explainable AI
05/02/2025 | iNEMIIn semiconductor manufacturing, the ability to analyze vast amounts of high-dimensional data is critical for ensuring product quality and optimizing wafer yield.
Alternative Manufacturing Inc. (AMI) Appoints Gregory Picard New Business Development Manager
05/01/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing Inc. (AMI) is pleased to announce the appointment of Mr. Gregory Picard as our new Business Development Manager. Picard brings a wealth of experience in Sales and Business Development, having worked with some of the most prominent names in the industry.