Unlocking the Gates to Quantum Computing
March 28, 2016 | GRIFFITH UNIVERSITYEstimated reading time: 2 minutes

Researchers from Griffith University and the University of Queensland have overcome one of the key challenges to quantum computing by simplifying a complex quantum logic operation. They demonstrated this by experimentally realising a challenging circuit -- the quantum Fredkin gate -- for the first time.
"The allure of quantum computers is the unparalleled processing power that they provide compared to current technology," said Dr Raj Patel from Griffith's Centre for Quantum Dynamics.
"Much like our everyday computer, the brains of a quantum computer consist of chains of logic gates, although quantum logic gates harness quantum phenomena."
The main stumbling block to actually creating a quantum computer has been in minimising the number of resources needed to efficiently implement processing circuits.
"Similar to building a huge wall out lots of small bricks, large quantum circuits require very many logic gates to function. However, if larger bricks are used the same wall could be built with far fewer bricks," said Dr Patel.
"We demonstrate in our experiment how one can build larger quantum circuits in a more direct way without using small logic gates."
At present, even small and medium scale quantum computer circuits cannot be produced because of the requirement to integrate so many of these gates into the circuits. One example is the Fredkin (controlled- SWAP) gate. This is a gate where two qubits are swapped depending on the value of the third.
Usually the Fredkin gate requires implementing a circuit of five logic operations. The research team used the quantum entanglement of photons -- particles of light -- to implement the controlled-SWAP operation directly.
"There are quantum computing algorithms, such as Shor's algorithm for factorising prime numbers, that require the controlled-SWAP operation.
The quantum Fredkin gate can also be used to perform a direct comparison of two sets of qubits (quantum bits) to determine whether they are the same or not. This is not only useful in computing but is an essential feature of some secure quantum communication protocols where the goal is to verify that two strings, or digital signatures, are the same," said Professor Tim Ralph from the University of Queensland.
Professor Geoff Pryde, from Griffith's Centre for Quantum Dynamics, is the project's chief investigator.
"What is exciting about our scheme is that it is not limited to just controlling whether qubits are swapped, but can be applied to a variety of different operations opening up ways to control larger circuits efficiently," said Professor Pryde.
"This could unleash applications that have so far been out of reach."
Suggested Items
Green Circuits to Discuss High-Reliability Space Electronics in Booth 233 at the 2025 Small Satellite Conference
07/10/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is pleased to announce its participation in the 39th Annual Small Satellite Conference, taking place August 10–13, 2025, in Salt Lake City, Utah.
Study on Resonance Mitigation in Metallic Shielding for Integrated Circuits
07/08/2025 | Maria Cuesta-Martin, Victor Martinez, Vidal Gonzalez Aguado, Würth ElektronikInherent cavity resonant modes often lead to significant degradation of shielding effectiveness, responsible for unwanted electromagnetic coupling. Cavity resonant modes of the metal shielding enclosure can produce two adverse problems: the mutual coupling among different RF modules and shielding effectiveness reduction of the metal enclosure. The cabinets serve to shield certain components from electromagnetic interference (EMI). However, these cavities present some resonance peaks at 5 GHz, making it impossible to use them at higher frequencies.
Green Circuits to Exhibit Full-Service Electronics Manufacturing Solutions at 2025 SMD Symposium
07/02/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is pleased to announce its participation in the 2025 SMD Symposium, taking place August 5-7 at the Von Braun Center in Huntsville, Alabama.
Green Circuits Boosts Test Capacity with New Takaya APT-1600FD System
06/24/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is pleased to announce the purchase of its fourth Takaya APT-1600FD Double-sided Flying Probe Test System.
ASC Sunstone Circuits and Screaming Circuits Partner to Launch Online Assembly Parts Ordering – A New Step Toward Seamless PCB Production
06/23/2025 | ASC SunstoneIn a major step toward simplifying the PCB manufacturing and assembly process, ASC Sunstone Circuits and Screaming Circuits are proud to announce the launch of a new online assembly parts ordering feature, now available through Sunstone.com. This enhanced capability allows customers to source assembly components as part of their PCB order, creating a fully integrated experience from bare board fabrication to finished assembly.