Unlocking the Gates to Quantum Computing
March 28, 2016 | GRIFFITH UNIVERSITYEstimated reading time: 2 minutes

Researchers from Griffith University and the University of Queensland have overcome one of the key challenges to quantum computing by simplifying a complex quantum logic operation. They demonstrated this by experimentally realising a challenging circuit -- the quantum Fredkin gate -- for the first time.
"The allure of quantum computers is the unparalleled processing power that they provide compared to current technology," said Dr Raj Patel from Griffith's Centre for Quantum Dynamics.
"Much like our everyday computer, the brains of a quantum computer consist of chains of logic gates, although quantum logic gates harness quantum phenomena."
The main stumbling block to actually creating a quantum computer has been in minimising the number of resources needed to efficiently implement processing circuits.
"Similar to building a huge wall out lots of small bricks, large quantum circuits require very many logic gates to function. However, if larger bricks are used the same wall could be built with far fewer bricks," said Dr Patel.
"We demonstrate in our experiment how one can build larger quantum circuits in a more direct way without using small logic gates."
At present, even small and medium scale quantum computer circuits cannot be produced because of the requirement to integrate so many of these gates into the circuits. One example is the Fredkin (controlled- SWAP) gate. This is a gate where two qubits are swapped depending on the value of the third.
Usually the Fredkin gate requires implementing a circuit of five logic operations. The research team used the quantum entanglement of photons -- particles of light -- to implement the controlled-SWAP operation directly.
"There are quantum computing algorithms, such as Shor's algorithm for factorising prime numbers, that require the controlled-SWAP operation.
The quantum Fredkin gate can also be used to perform a direct comparison of two sets of qubits (quantum bits) to determine whether they are the same or not. This is not only useful in computing but is an essential feature of some secure quantum communication protocols where the goal is to verify that two strings, or digital signatures, are the same," said Professor Tim Ralph from the University of Queensland.
Professor Geoff Pryde, from Griffith's Centre for Quantum Dynamics, is the project's chief investigator.
"What is exciting about our scheme is that it is not limited to just controlling whether qubits are swapped, but can be applied to a variety of different operations opening up ways to control larger circuits efficiently," said Professor Pryde.
"This could unleash applications that have so far been out of reach."
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
I-Connect007 Launches New Podcast Series on Ultra High Density Interconnect (UHDI)
09/16/2025 | I-Connect007I-Connect007 is excited to announce the debut of its latest On the Line With... podcast series, which shines a spotlight on one of the most important emerging innovations in electronics manufacturing: Ultra-High-Density Interconnect (UHDI).
Elephantech Selected for NEDO’s Deep-Tech Startups Support Program in the Green Transformation field
09/09/2025 | ElephantechElephantech is pleased to announce its selection for the Demonstration development for Mass Production (DMP) phase of the 4th round of the Deep-Tech Startups Support Program in the Green Transformation field (GX) by NEDO, the New Energy and Industrial Technology Development Organization of Japan.
ASC Sunstone Circuits to Exhibit at AEMS 2025
09/09/2025 | American Standard CircuitsASC Sunstone Circuits will be exhibiting at AEMS 2025 (Anaheim Electronics and Manufacturing Show) to be held at the Anaheim Convention Center on September 24 and 25, 2025.
American Standard to Participate in European Microwave Week 2025
09/05/2025 | American Standard CircuitsAnaya Vardya, President, and CEO of American Standard Sunstone Circuits has announced that his company will once again be taking part in European Microwave Week, Europe’s premier RF, microwave, radar and wireless event, to be held from September 21-26, 2025 at Jaarbeurs in Utrecht, The Netherlands.
UHDI Fundamentals: UHDI Technology and Industry 4.0
09/03/2025 | Anaya Vardya, American Standard CircuitsUltra high density interconnect (UHDI) technology is rapidly transforming how smart systems are designed and deployed in the context of Industry 4.0. With its capacity to support highly miniaturized, high-performance, and densely packed electronics, UHDI is a critical enabler of the smart, connected, and automated industrial future. Here, I’ll explore the synergy between UHDI and Industry 4.0 technologies, highlighting applications, benefits, and future directions.