New Research Ensures Car LCDs Work in Extreme Cold, Heat
March 28, 2016 | University of Central FloridaEstimated reading time: 1 minute

One of UCF's most prolific inventors has solved a stubborn problem: How to keep the electronic displays in your car working, whether you're driving in the frigid depths of winter or under the broiling desert sun.
LCD screens are everywhere -- our smartphones, televisions, laptops and more. Increasingly, they're now popping up in automobiles, where it's now common to find liquid crystal displays showing speed, distance, fuel consumption and other information, as well as GPS mapping, rearview cameras and audio systems.
But current technology has an Achilles heel: The displays grow blurry and sluggish in extreme temperatures.
"Liquid crystals exist only in a certain temperature range. In order to work in extreme environments, we need to widen that temperature range," said researcher Shin-Tson Wu of the University of Central Florida.
That's what Wu and his team have done in his lab in UCF's College of Optics & Photonics.
As reported recently in the scholarly journal Optical Materials Express, Wu and his collaborators formulated several new liquid crystal mixtures that don't have the temperature limitations of those now in use. The liquid crystals should maintain their speed and viscosity in temperatures as high as 212 degrees Fahrenheit and as low as minus 40 degrees Fahrenheit.
In addition, the pixels are able to change their brightness level about 20 times faster than required by European automotive standards.
The breakthrough has applications in the automotive industry and with any other manufacturer of devices with LCD screens.
Wu, who holds UCF's highest faculty honor as a Pegasus Professor, is no stranger to new discoveries with practical uses in the real world. He previously played a key role in developing LCDs for smartphones and other devices that are readable in sunlight.
Through his work with advanced LCDs, adaptive optics, laser- beam steering, biophotonics and new materials, Wu has registered about 84 patents. In 2014, he was one of the first inductees to the Florida Inventors Hall of Fame.
Wu worked with a team of doctoral students from his research group -- Fenglin Peng, Yuge "Esther" Huang and Fangwang "Grace" Gou -- as well as collaborators from Xi'an Modern Chemistry Research Institute in Xi'an, China, and DIC Corp. in Japan.
"Our team is always trying to find new recipes for materials," Huang said.
Wu is currently working on a smart brightness control film that has applications for automobiles, planes, eyewear, windows and more.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.