New Research Ensures Car LCDs Work in Extreme Cold, Heat
March 28, 2016 | University of Central FloridaEstimated reading time: 1 minute

One of UCF's most prolific inventors has solved a stubborn problem: How to keep the electronic displays in your car working, whether you're driving in the frigid depths of winter or under the broiling desert sun.
LCD screens are everywhere -- our smartphones, televisions, laptops and more. Increasingly, they're now popping up in automobiles, where it's now common to find liquid crystal displays showing speed, distance, fuel consumption and other information, as well as GPS mapping, rearview cameras and audio systems.
But current technology has an Achilles heel: The displays grow blurry and sluggish in extreme temperatures.
"Liquid crystals exist only in a certain temperature range. In order to work in extreme environments, we need to widen that temperature range," said researcher Shin-Tson Wu of the University of Central Florida.
That's what Wu and his team have done in his lab in UCF's College of Optics & Photonics.
As reported recently in the scholarly journal Optical Materials Express, Wu and his collaborators formulated several new liquid crystal mixtures that don't have the temperature limitations of those now in use. The liquid crystals should maintain their speed and viscosity in temperatures as high as 212 degrees Fahrenheit and as low as minus 40 degrees Fahrenheit.
In addition, the pixels are able to change their brightness level about 20 times faster than required by European automotive standards.
The breakthrough has applications in the automotive industry and with any other manufacturer of devices with LCD screens.
Wu, who holds UCF's highest faculty honor as a Pegasus Professor, is no stranger to new discoveries with practical uses in the real world. He previously played a key role in developing LCDs for smartphones and other devices that are readable in sunlight.
Through his work with advanced LCDs, adaptive optics, laser- beam steering, biophotonics and new materials, Wu has registered about 84 patents. In 2014, he was one of the first inductees to the Florida Inventors Hall of Fame.
Wu worked with a team of doctoral students from his research group -- Fenglin Peng, Yuge "Esther" Huang and Fangwang "Grace" Gou -- as well as collaborators from Xi'an Modern Chemistry Research Institute in Xi'an, China, and DIC Corp. in Japan.
"Our team is always trying to find new recipes for materials," Huang said.
Wu is currently working on a smart brightness control film that has applications for automobiles, planes, eyewear, windows and more.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.