A Flexible Camera: A Radically Different Approach to Imaging
April 15, 2016 | Columbia University School of Engineering and Applied ScienceEstimated reading time: 2 minutes

A team led by Shree K. Nayar, T.C. Chang Professor of Computer Science at Columbia Engineering, has developed a novel sheet camera that can be wrapped around everyday objects to capture images that cannot be taken with one or more conventional cameras.
The Columbia team, which includes research engineer Daniel Sims BS’14 and postdoctoral researcher Yonghao Yue, designed and fabricated a flexible lens array that adapts its optical properties when the sheet camera is bent. This optical adaptation enables the sheet camera to produce high quality images over a wide range of sheet deformations. Sims will present the work at the International Conference on Computational Photography (ICCP) at Northwestern University in Evanston, IL, May 13 to 15.
“Cameras today capture the world from essentially a single point in space,” says Nayar. “While the camera industry has made remarkable progress in shrinking the camera to a tiny device with ever increasing imaging quality, we are exploring a radically different approach to imaging. We believe there are numerous applications for cameras that are large in format but very thin and highly flexible.”
If such an imaging system could be manufactured cheaply, like a roll of plastic or fabric, it could be wrapped around all kinds of things, from street poles to furniture, cars, and even people’s clothing, to capture wide, seamless images with unusual fields of view. This design could also lead to cameras the size of a credit card that a photographer could simply flex to control its field of view.
The new “flex-cam” requires two technologies—a flexible detector array and a thin optical system that can project a high quality image on the array. One approach would be to attach a rigid lens with fixed focal length to each detector on the flexible array. In this case, however, bending the camera would result in “gaps” between the fields of views of adjacent lenses. This would cause the captured image to have missing information, or appear “aliased.”
To solve this problem, the Columbia Engineering team developed an adaptive lens array made of elastic material that enables the focal length of each lens in the sheet camera to vary with the local curvature of the sheet in a way that mitigates aliasing in the captured images. This inherent optical adaptation of the lens is passive, avoiding the use of complex mechanical or electrical mechanisms to independently control each lens of the array.
The researchers arrived at their passively adaptive lens array by optimizing its geometry and material properties. They fabricated their prototype lens array using silicone and demonstrated its ability to produce high image quality over a wide range of deformations of the sheet camera. The research was conducted in Nayar’s Computer Vision Laboratory and was funded by the Office of Naval Research.
“The adaptive lens array we have developed is an important step towards making the concept of flexible sheet cameras viable,” Nayar says. “The next step will be to develop large-format detector arrays to go with the deformable lens array. The amalgamation of the two technologies will lay the foundation for a new class of cameras that expand the range of applications that benefit from imaging.”
Columbia University School of Engineering
RELATED VIDEO
Suggested Items
LG Innotek to Build FC-BGA into 700 Million USD Business with State-of-the-art Dream Factory
05/01/2025 | PR NewswireLG unveiled the Dream Factory, a hub for the production of FC-BGAs (Flip Chip Ball Grid Arrays), the company's next-generation growth engine, to the media for the first time and announced it on the 30th April.
New IPC Standard Sets First Global Benchmark for E-Textile Wearable Reliability
04/29/2025 | IPCIPC announces the release of IPC-8981, Quality and Reliability of E-Textile Wearables. This first-of-its-kind standard sets baselines for testing and classifying e-textile wearables, addressing key challenges in product reliability, performance, and quality assurance.
A Day in the Life of an Apprentice at Arc-Tronics
04/29/2025 | Cory Blaylock, IPCWe're recognizing National Apprenticeship Week with this feature on Arc-Tronics, which launched its first-ever apprenticeship program in 2024 to emphasize the importance of workforce development and reflect its deep commitment to nurturing future talent. This program not only provides hands-on experience to apprentices but also ensures the company’s continued leadership in the industry.
Candor Elevates PCB Fabrication Services with Continued Facility Upgrades
04/28/2025 | Candor CircuitsOntario-based circuit board manufacturer, Candor Circuit Boards has recently completed a series of facility upgrades to improve their PCB offerings. These investments will allow Candor to provide higher volumes of complicated boards more efficiently with better yield. The new technology has allowed the company to take on exciting high technology projects and collaborations in industries such as Military and Aerospace, Medical, Energy and more.
Tandem Panel Shipments to Jump Again to 36% in 2026
04/25/2025 | BUSINESS WIREAccording to recent display industry research from Omdia, tandem RGB penetration into the OLED tablet and notebook panel markets surged from almost zero to more than 30% in 2024.