Method Stabilizes, Enhances Phosphorene
May 3, 2016 | Northwestern UniversityEstimated reading time: 2 minutes
Two years ago, Northwestern Engineering’s Mark Hersam discovered a way to stabilize exfoliated black phosphorus — or phosphorene — a layered semiconductor that chemically degrades in open air but shows great promise for electronics. By encapsulating it in aluminum oxide, he was able to stabilize phosphorene’s reactivity to oxygen and water.
“The problem is that now the phosphorene is buried underneath the aluminum oxide coating, which limits what we can do with it,” said Hersam, Walter P. Murphy Professor of Materials Science and Engineering. “Wouldn’t it be better if we could stabilize phosphorene without occluding its surface?”
Hersam and his team have done just that.
By using organic chemistry to covalently react a single-molecule-thick layer onto phosphorene, the team effectively imparted the same passivation it achieved with alumina back in 2014. But this time the layer is thin enough to leave access to the material’s surface.
“If it’s going to be useful for applications such as sensors, then whatever you want to detect needs to be able to interact with the material,” Hersam said. “The thick layer of aluminum oxide prevented any atmospheric species from reaching the phosphorene surface, so it could not be used as a detector.”
Supported by the Office of Naval Research and the Department of Energy, the research is described online in the May 2 issue of the journal Nature Chemistry. Christopher Ryder, a graduate student in Hersam’s laboratory, served as the paper’s first author. Tobin J. Marks, Vladimir N. Ipatieff Professor of Catalytic Chemistry in the Weinberg College of Arts and Sciences and professor of materials science and engineering, and George Schatz, the Charles E. and Emma H. Morrison Professor of Chemistry and professor of chemical and biological engineering, also co-authored the paper.
In recent years, phosphorene has captured attention as a powerful semiconductor with high potential for use in thin, flexible electronics. Its instability in open air, however, has prevented it from being tested in possible applications, such as transistors, optoelectronics, sensors, or even batteries. Now it turns out that the covalently bonded, single-molecule-thick layer might even increase phosphorene’s value for use in these applications. The team discovered that not only does the layer prevent phosphorene from degrading, but it also improves its electronic properties.
“The chemistry influenced the flow of charge through phosphorene,” Hersam said. “We achieved improvement in charge mobility, which is related to the speed of the transistor, and how well it switches in an integrated circuit.”
Now that Hersam’s team has created a stable version of phosphorene, it plans to explore these potential applications. The next step is to create optimized devices based on phosphorene and compare them to devices made with alternative materials.
“We can imagine many possibilities,” Hersam said. “The future will teach us exactly where phosphorene has a competitive advantage.”
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.