New Method Points to Compact, Cheap and Efficient Sources of Quantum Information Bits
May 5, 2016 | The Hebrew University of JerusalemEstimated reading time: 2 minutes
Quantum information science and technology has emerged as a new paradigm for dramatically faster computation and secure communication in the 21st century. At the heart of any quantum system is the most basic building block, the quantum bit or qbit, which carries the quantum information that can be transferred and processed (this is the quantum analogue of the bit used in current information systems). The most promising carrier qbit for ultimately fast, long distance quantum information transfer is the photon, the quantum unit of light.
The challenge facing scientists is to produce artificial sources of photons for various quantum information tasks. One of the biggest challenges is the development of efficient, scalable photon sources that can be mounted on a chip and operate at room temperature. Most sources used in labs today have to be very cold (at the temperature of liquid Helium, about -270C), which requires large and expensive refrigerators. Many sources also emit photons in undefined directions, making efficient collection a hard problem.
Now, a team of scientists from the Hebrew University of Jerusalem has demonstrated an efficient and compact single photon source that can operate on a chip at ambient temperatures. Using tiny nanocrystals made of semiconducting materials, the scientists developed a method in which a single nanocrystal can be accurately positioned on top of a specially designed and carefully fabricated nano-antenna.
In the same way large antennas on rooftops direct emission of classical radio waves for cellular and satellite transmissions, the nano-antenna efficiently directed the single photons emitted from the nanocrystals into a well-defined direction in space. This combined nanocrystals-nanoantenna device was able to produce a highly directional stream of single photons all flying to the same direction with a record low divergence angle. These photons were then collected with a very simple optical setup, and sent to be detected and analyzed using single photon detectors.
The team demonstrated that this hybrid device enhances the collection efficiency of single photons by more than a factor of 10 compared to a single nanocrystal without the antenna, without the need for complex and bulky optical collection systems used in many other experiments. Experimental results show that almost 40% of the photons are easily collected with a very simple optical apparatus, and over 20% of the photons are emitted into a very low numerical aperture, a 20-fold improvement over a freestanding quantum dot, and with a probability of more than 70% for a single photon emission. The single photon purity is limited only by emission from the metal, an obstacle that can be bypassed with careful design and fabrication.
The antennas were fabricated using simple metallic and dielectric layers using methods that are compatible with current industrial fabrication technologies, and many such devices can be fabricated densely on one small chip. The team is now working on a new generation of improved devices that will allow deterministic production of single photons straight from the chip into optical fibers, without any additional optical components, with a near unity efficiency.
"This research paves a promising route for a high purity, high efficiency, on-chip single photon source operating at room temperature, a concept that can be extended to many types of quantum emitters. A highly directional single photon source could lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future quantum technological applications", said Prof. Ronen Rapaport, of the Racah Institute of Physics, The Department of Applied Physics, and the Center of Nanoscience and Nanotechnology at the Hebrew University of Jerusalem.
Suggested Items
RTX's Collins Aerospace Enhances Capabilities to Speed Marine Corps Decision-making in Battle
04/22/2025 | RTXCollins Aerospace, an RTX business, successfully demonstrated new technology that helps the military gather and use information from a wider range of sources at Project Convergence Capstone 5, a large-scale military exercise.
IPC APEX EXPO 2025 Learning Lounge: Education on the Show Floor
04/16/2025 | Andy Shaughnessy, Design007The conference portion of IPC APEX EXPO has been providing educational opportunities for attendees since the first show. But recently, show managers decided to expand education onto the show floor.
INEMI Sustainable Electronics Tech Topic Webinar: Enabling New Life in Storage Devices
04/07/2025 | iNEMIHard disk drives (HDDs) and solid state drives (SSDs) are ubiquitous in electronic products and a large number enter the end-of-life stream prior to their true end of life.
Gartner Identifies Top 12 Early-Stage Technology Disruptions that Will Define the Future of Business Systems
04/07/2025 | Gartner, Inc.Gartner, Inc. has identified 12 emerging technology disruptions that will define the future of business systems. Technology leaders must prioritize these over the next five years, as they present competitive opportunities in the near term and will eventually grow to become standard throughout businesses.
IPC APEX EXPO 2025: We’ve Got It Covered
04/01/2025 | I-Connect007 Editorial TeamIPC APEX EXPO is the largest electronics manufacturing trade show in North America, bringing together professionals from all sectors of the supply chain to educate, network, and share their products and services. We’ve put all our coverage of the show in one easy-to-find location. Just click on “Videos,” “Show Coverage” and “Photos” to find what you’re looking for. Check back regularly as more content is added. You won’t want to miss any of our unique coverage.