Transparent Wood Could Create New Windows, Cars and Solar Panels
May 6, 2016 | University of MarylandEstimated reading time: 2 minutes

Researchers at the University of Maryland have made a block of linden wood transparent, which they say will be useful in fancy building materials and in light-based electronics systems.
Liangbing Hu Materials scientist Liangbing Hu (also a member of the Maryland NanoCenter and the University fo Maryland's Energy Research Center) and his team at the University of Maryland, College Park, have removed the molecule in wood, lignin, that makes it rigid and dark in color. They left behind the colorless cellulose cell structures, filled them with epoxy, and came up with a version of the wood that is mostly see-thru. They published their results today in the journal Advanced Materials ("Highly Anisotropic, Highly Transparent Wood Composites").
"It can be used in automobiles when the wood is made both transparent and high strength," said Dr. Mingwei Zhu, the co-first author of the paper, a visiting professor at the University of Maryland. "You could also use it as a unique building material."
Remember "xylem" and "phloem" from grade-school science class? These structures pass water and nutrients up and down the tree. Hu and his colleagues see these as vertically aligned channels in the wood, a naturally-grown structure that can be used to pass light along, after the wood has been treated.
The resulting 3-inch block of wood had both high transparency – the quality of being see-thru—and high haze – the quality of scattering light. This would be useful, said Hu, in making devices comfortable to look at. It would also help solar cells trap light – light could easily enter through the transparent function, but the high haze would keep the light bouncing around near where it would be absorbed by the solar panel.
They compared how the materials performed and how light worked its way through the wood when they sliced it two ways – one with the grain of the wood, so that the channels passed through the longest dimension of the block. And they also tried slicing it against the grain, so that the channels passed through the shortest dimension of the block.
The short channel wood proved slightly stronger and a little less brittle. But though the natural component making the wood strong had been removed, the addition of the epoxy made the wood four to six times tougher than the untreated version.
Then they investigated how the different directions of the wood affected the way the light passed through it. When laid down on top of a grid, both kinds of wood showed the lines clearly. When lifted just a touch above the grid, the long-channel wood still showed the grid, just a little bit more blurry. But the short channel wood, when lifted those same few millimeters, made the grid completely invisible.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.