Flexible, Dissolvable Silicon Electronic Device Holds Promise for Brain Monitoring
May 11, 2016 | University of PennsylvaniaEstimated reading time: 1 minute

An implantable brain device that literally melts away at a pre-determined rate minimizes injury to tissue normally associated with standard electrode implantation, according to research led by a team from the Perelman School of Medicine at the University of Pennsylvania. The researchers describe online in Nature Materials a new class of technology that provides greater resolution for measuring electrical activity in space and time that matches or exceeds existing methods.
“Dissolvable silicon electronics offer an unprecedented opportunity to implant advanced monitoring systems that eliminate the risks, cost, and discomfort associated with surgery to extract current devices used for post-operative monitoring,” said senior co-author Brian Litt, MD, a professor of Neurology, Neurosurgery, and Bioengineering. Litt co-led the study with long-time collaborator John A. Rogers, PhD, a material scientist from the University of Illinois at Urbana-Champaign. “This study tested the usefulness of temporary, dissolvable monitoring systems capable of providing continuous streams of data for guiding medical care over predetermined periods of time -- from days to months -- before dissolving.”
The device is made of layers of silicon and molybdenum that can measure physiological characteristics and dissolve at a known rate, as determined by its thickness. For example, the team used the device to record brain waves in rats under anesthesia, as well as voltage fluctuations between neurons (EEGs), and induced epileptic spikes in intact live tissue. A separate experiment demonstrated a complex, multiplexed array made from these materials that could map rat-whisker sensing capabilities at high resolution.
These electrophysiological signals were recorded from devices placed at the surface of the brain cortex (the outer layer of tissue) and the inner space between the scalp and skull. Chronic measurements were made over a 30-day period, while acute experiments demonstrated device operations over three to four hours.
The type of neurophysiologic features measured by the new device are commonly used for diagnosing and treating such disorders as epilepsy, Parkinson's disease, depression, chronic pain, and conditions of the peripheral nervous system. “These measurements are critically important for mapping and monitoring brain function during and in preparation for neurosurgery, for assisting in device placement, such as for Parkinson's disease, and for guiding surgical procedures on complex, interconnected nerve structures,” Litt said.
Suggested Items
MICROOLED Announces Partnership with Vortex Optics and Brand New US Headquarters
05/02/2025 | BUSINESS WIREMICROOLED Inc., the leading global supplier of AMOLED displays, is proud to announce their partnership with Vortex Optics to advance the development of high-performance weapon sights for optical sighting systems.
SEMI 3D & Systems Summit to Spotlight Trends in Hybrid Bonding, Chiplet Architecture and Geopolitical Dynamics
05/01/2025 | SEMILeading experts in 3D integration and systems for semiconductor manufacturing applications will gather at the annual SEMI 3D & Systems Summit, June 25-27, 2025, in Dresden.
Kasuo Electronics Launches Advanced Testing Laboratory to Strengthen Global Supply Chain Quality Assurance
04/29/2025 | BUSINESS WIREKasuo Electronics Co., Ltd, a globally recognized trader of electronic components, has officially operationalized its state-of-the-art testing laboratory.
OSI Systems Receives Orders for $50 Million to Support the Deployment of Cargo and Vehicle Inspection Solutions
04/29/2025 | BUSINESS WIREOSI Systems, Inc. announced that its Security division received multiple awards totaling approximately $50 million from an existing U.S. customer to support the ongoing deployment of its industry leading Rapiscan Cargo and Vehicle Non-Intrusive Inspection technology.
BAE Systems Selected to Enhance Ground System for Space Force Missile Warning Satellites
04/29/2025 | BAE SystemsBAE Systems has been selected by U.S. Space Force Space Systems Command to provide a new satellite command and control (C2) system for its Future Operationally Resilient Ground Evolution (FORGE) program.