New Device Developed at UBC Could Improve Cancer Detection
May 12, 2016 | University of British ColumbiaEstimated reading time: 1 minute

A new UBC-developed method to isolate cancer cells that have escaped from a tumour could soon pave the way for improved diagnosis and treatment.
The simple process involves a special device that squeezes cells in a blood sample through tiny funnels, which drive the cancer cells and blood cells into separate streams based on differences in their size and softness.
"Circulating tumour cells--cells from a tumour that have escaped into the bloodstream with the potential to spread into other tissues--are extremely useful for assessing a patient's disease in order to select the most appropriate treatment," said UBC mechanical engineering professor Hongshen Ma, the lead researcher. "These cells are particularly important for prostate cancer, where the site of metastasis is typically in the bone, where biopsies are difficult or impossible."
Ma's research focus is microfluidics, the flow of liquids through channels smaller than a human hair. The microfluidic device designed by his team captures cells based on their distinct internal structure--a mechanical analysis instead of the blood chemistry analysis used in conventional medical diagnostic techniques.
The device was first tested using blood samples spiked with cancer cells. It was then used to analyze blood samples from 20 patients with metastatic castration-resistant prostate cancer, an advanced form of cancer, and from four healthy individuals.
"In the first experiment, the device was able to capture more than 90 per cent of the cells," noted co-author Dr. Kim N. Chi, director of clinical research at the B.C. Cancer Agency and a professor of medicine at UBC. "Importantly, in patient samples the device captured about 25 times the number of cancer cells and produced fewer false positives compared to the conventional CellSearch system, which also analyzes blood samples."
The team is currently working on genome sequencing of individual circulating tumour cells from patients at the Vancouver Prostate Centre. This would allow researchers to determine the mutations responsible for metastasis so that doctors can select the most appropriate treatment.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Honeywell Advances Technology for the European Defense Sector
04/29/2025 | HoneywellHoneywell has received two research grants to execute projects aimed at advancing avionics and cybersecurity capabilities for the European defense sector.
Real Time with... IPC APEX EXPO 2025: Winner of the IPC Best Student Poster Award
04/29/2025 | Real Time with...IPC APEX EXPOSebastian Carrillo, winner of the Best Student Technical Poster Award, shares insights on his research in nanotechnology and plasmonics. His work on a metal insulator nano array focuses on light-matter interactions at the nanoscale. With advancements in manufacturing, applications include sensing technologies and photovoltaic systems. Sebastian discusses his project involving simulations and optical experiments. His career goals are in research, and he encourages students to seize academic opportunities.
ITRI Named a Top 100 Global Innovator for the Ninth Time
04/28/2025 | PRNewswireThe Industrial Technology Research Institute (ITRI) was officially honored at the 2025 Top 100 Global Innovators Award Ceremony hosted by Clarivate in Taipei.
Hon Hai Research Institute's Fourth-generation Semiconductor Application Reaches a New Milestone
04/21/2025 | FoxconnHon Hai Research Institute ( HHRI ) Semiconductor Research Institute has conducted cross-border cooperation with Yang Ming Chiao Tung University and the University of Texas at Austin to invest in forward-looking research on fourth-generation semiconductors.