No GPS? Listen to VLF Radio Signals to Find Way Home
May 23, 2016 | DARPAEstimated reading time: 3 minutes

The Defense Advanced Research Projects Agency is working now to develop a backup system to be used by service members in the event that access to the Global Positioning System, or GPS, is denied to them by adversaries.
Lin Haas, with DARPA's Strategic Technology Office, discussed the effort, May 11, during "DARPA Demo Day" in the Pentagon courtyard.
"Our main goal is a backup position navigation and timing system when GPS is not available. We're focusing on naval surface and aviation ... and it's very applicable to Army helicopters," Haas said, adding that DARPA is working closely with the Army's Communications Electronics Research Development and Engineering Command in the effort.
The "Spatial, Temporal and Orientation Information in Contested Environments" project, or STOIC, is meant to provide position navigation and timing in situations where GPS is denied to U.S. forces, he said.
"Right now we don't have a backup PNT system that provides global coverage," he said. "That's what STOIC is researching -- can we provide a backup?"
The STOIC system makes use of very low frequency, or VLF signals already being generated by the Navy for use in communicating with submarines. The VLF stations are located around the globe in fixed locations. In part, STOIC uses those signals to triangulate a user's position on the globe, in much the same way a GPS receiver is used.
Haas had a video display at the Pentagon that demonstrated how some of their work might be applied. On the screen was an overview of a vehicle traveling along a route. Three lines on the screen traced the route of the vehicle's position.
A yellow line was produced by GPS, and was extremely accurate in following the vehicle along the road it traveled. A red line traced the vehicle's route using inertial navigation -- which uses things like a gyroscope and inertial sensors to measure a vehicle's movement away from a previously-known point. The inertial navigation system was accurate for a while, then sharply diverged away from the actual route, never to return. Inertial navigation systems, because they don't use any external reference, compound on their own errors.
Finally, a green line showed navigation traced by a combination of inertial navigation plus use of a VLF signal. The green line danced erratically around the actual route, but never wandered too far from the vehicle.
"We took one day to plug the VLF receiver into the navigation system, and this is the result we got when driving," Haas said. "No months of optimization."
Haas said one of the reasons the green line danced around the screen was due to magnetic interference from things in the vicinity that affect the VLF signals. There was no mitigation for that kind of interference in their initial field tests, he said. But they will work on that to correct it. Additionally, he said, such interference isn't a problem in the air or on the sea -- so that's where they are focusing their efforts now.
"Once we get that foundation for that system in place, there is a lot of work we need to do in terms of developing VLF measurement models," he said.
Haas said an important aspect of using VLF to provide PNT for use in place of GPS is to measure how various terrain affects the VLF signal, and to incorporate that information into the systems that will use VLF for navigation.
"We've got a lot of hard work to do there," he said. "After that, that is when we want to focus on ground applications, and using the signals indoors. VLF can pick up indoors."
Haas said they are shooting to demonstrate real-time positioning with their system by fiscal year 2018 or 2019. There will also be an at-sea demo this summer.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
AV Switchblade 600 Loitering Munition System Achieves Pivotal Milestone with First-Ever Air Launch from MQ-9A
09/12/2025 | BUSINESS WIREAeroVironment, Inc. (AV) a global leader in intelligent, multi-domain autonomous systems, announced its Switchblade 600 loitering munition system (LMS) has achieved a significant milestone with its first-ever air launch from an MQ-9A Reaper Unmanned Aircraft System (UAS).
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
IPS, SEL Raise the Bar for ENIG Automation in North America
09/11/2025 | Mike Brask, IPSIPS has installed a state-of-the-art automated ENIG plating line at Schweitzer Engineering Laboratories’ PCB facility in Moscow, Idaho. The 81-foot, fully enclosed line sets a new standard for automation, safety, and efficiency in North American PCB manufacturing and represents one of the largest fully enclosed final finish lines in operation.
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.